⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 testnaif.m.svn-base

📁 bayesian network structrue learning matlab program
💻 SVN-BASE
📖 第 1 页 / 共 2 页
字号:
ddd = datestr(now);ddd([12 15 18])='-' ;fnd=[ddd '.txt']; diary(fnd)dbstop if errorclear all;close all;disp('Jouet3 1');N=5;dagO = zeros(N);dagO(1,2)=1;dagO(2,[3 4])=1;dagO(4,5)=1;dagO(3,5)=1;draw_graph(dagO);node_sizes=2*ones(1,N);bnetO = mk_bnet(dagO, node_sizes);bnetO.CPD{1} = tabular_CPD(bnetO, 1, [0.2 0.8]);bnetO.CPD{2} = tabular_CPD(bnetO, 2, [0.3 0.6 0.7 0.4]);bnetO.CPD{3} = tabular_CPD(bnetO, 3, [0.3 0.5 0.7 0.5]);bnetO.CPD{4} = tabular_CPD(bnetO, 4, [0.35 0.45 0.65 0.55]);%bnetO.CPD{5} = tabular_CPD(bnetO, 5, [0.25 0.15 0.75 0.85]);bnetO.CPD{5} = tabular_CPD(bnetO, 5, [0.25 0.15 0.25 0.60 0.75 0.85 0.75 0.40]);m = 1000;for l=1:m, dataO(:,l) = sample_bnet(bnetO); endDM = 0.1rand('state',0); randn('state',0);vide = rand(size(dataO))<(1-DM);data = bnt_to_mat(dataO);data = data.*vide;data = mat_to_bnt(data,0);nbloopmax = 5;root = 1;prior = 0;discrete = 1:N;%profile ontic[BT_J11, Sbest0, L] = learn_struct_mwst_EM(data, discrete, node_sizes, prior, root, nbloopmax);toc%profile off%profile report mwstem_Jouet3_1BT_J11.dagBICT = get_BIC(BT_J11, data)BICT2 = get_BICL(BT_J11, L(end) ,m)% bnet_vide = mk_bnet(zeros(N),node_sizes);% for i=1:N, bnet_vide.CPD{i} = tabular_CPD(bnet_vide, i); end% %profile on% tic% [BS_J11, orderSEM0, BIC_scoreSEM0, L] = learn_struct_EM(bnet_vide, data, nbloopmax*4);% toc% %profile off% %profile report sem_Jouet3_1% BS_J11.dag% % BICS = get_BIC(BS_J11, data)% BICS2 = get_BICL(BS_J11, L(end) ,m)% % %profile on% tic% [BTS_J11, orderMWSTSEM0, BIC_scoreMWSTSEM0, L] = learn_struct_EM(BT_J11, data, nbloopmax*3);% toc% %profile off% %profile report sem_plus_t_Jouet3_1% BTS_J11.dag% % BICTS = get_BIC(BTS_J11, data)% BICTS2 = get_BICL(BTS_J11, L(end) ,m)% save jouet3_1% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clear all;% close all;% disp('Jouet3 2');% N=5;% dagO = zeros(N);% dagO(1,2)=1;% dagO(2,[3 4])=1;% dagO(4,5)=1;% dagO(3,5)=1;% draw_graph(dagO);% % node_sizes=2*ones(1,N);% bnetO = mk_bnet(dagO, node_sizes);% bnetO.CPD{1} = tabular_CPD(bnetO, 1, [0.2 0.8]);% bnetO.CPD{2} = tabular_CPD(bnetO, 2, [0.1 0.6 0.9 0.4]);% bnetO.CPD{3} = tabular_CPD(bnetO, 3, [0.3 0.5 0.7 0.5]);% bnetO.CPD{4} = tabular_CPD(bnetO, 4, [0.35 0.05 0.65 0.95]);% %bnetO.CPD{5} = tabular_CPD(bnetO, 5, [0.25 0.15 0.75 0.85]);% bnetO.CPD{5} = tabular_CPD(bnetO, 5, [0.25 0.15 0.05 0.60 0.75 0.85 0.95 0.40]);% % m = 500;% for l=1:m, dataO(:,l) = sample_bnet(bnetO); end% % DM = 0.2% rand('state',0); randn('state',0);% vide = rand(size(dataO))<(1-DM);% data = bnt_to_mat(dataO);% data = data.*vide;% data = mat_to_bnt(data,0);% % nbloopmax = 5;% root = 1;% prior = 0;% discrete = 1:N;% profile on% tic% [BT_J12, Sbest0, L] = learn_struct_mwst_EM(data, discrete, node_sizes, prior, root, nbloopmax);% toc% profile off% profile report mwstem_Jouet3_2% BT_J12.dag% % BICT = get_BIC(BT_J12, data)% BICT2 = get_BICL(BT_J12, L(end) ,m)% % bnet_vide = mk_bnet(zeros(N),node_sizes);% for i=1:N, bnet_vide.CPD{i} = tabular_CPD(bnet_vide, i); end% profile on% tic% [BS_J12, orderSEM0, BIC_scoreSEM0, L] = learn_struct_EM(bnet_vide, data, nbloopmax*4);% toc% profile off% profile report sem_Jouet3_2% BS_J12.dag% % BICS = get_BIC(BS_J12, data)% BICS2 = get_BICL(BS_J12, L(end) ,m)% % profile on% tic% [BTS_J12, orderMWSTSEM0, BIC_scoreMWSTSEM0, L] = learn_struct_EM(BT_J12, data, nbloopmax*3);% toc% profile off% profile report sem_plus_t_Jouet3_2% BTS_J12.dag% % BICTS = get_BIC(BTS_J12, data)% BICTS2 = get_BICL(BTS_J12, L(end) ,m)% save jouet3_2% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clear all;% close all;% disp('Jouet3 3');% N=5;% dagO = zeros(N);% dagO(1,2)=1;% dagO(2,[3 4])=1;% dagO(4,5)=1;% dagO(3,5)=1;% draw_graph(dagO);% % node_sizes=2*ones(1,N);% bnetO = mk_bnet(dagO, node_sizes);% bnetO.CPD{1} = tabular_CPD(bnetO, 1, [0.2 0.8]);% bnetO.CPD{2} = tabular_CPD(bnetO, 2, [0.1 0.6 0.9 0.4]);% bnetO.CPD{3} = tabular_CPD(bnetO, 3, [0.3 0.5 0.7 0.5]);% bnetO.CPD{4} = tabular_CPD(bnetO, 4, [0.35 0.05 0.65 0.95]);% %bnetO.CPD{5} = tabular_CPD(bnetO, 5, [0.25 0.15 0.75 0.85]);% bnetO.CPD{5} = tabular_CPD(bnetO, 5, [0.25 0.15 0.05 0.60 0.75 0.85 0.95 0.40]);% % m = 500;% for l=1:m, dataO(:,l) = sample_bnet(bnetO); end% % DM = 0.3% rand('state',0); randn('state',0);% vide = rand(size(dataO))<(1-DM);% data = bnt_to_mat(dataO);% data = data.*vide;% data = mat_to_bnt(data,0);% % nbloopmax = 5;% root = 1;% prior = 0;% discrete = 1:N;% profile on% tic% [BT_J13, Sbest03, L] = learn_struct_mwst_EM(data, discrete, node_sizes, prior, root, nbloopmax);% toc% profile off% profile report mwstem_Jouet3_3% BT_J13.dag% % BICT = get_BIC(BT_J13, data)% BICT2 = get_BICL(BT_J13, L(end) ,m)% % bnet_vide = mk_bnet(zeros(N),node_sizes);% for i=1:N, bnet_vide.CPD{i} = tabular_CPD(bnet_vide, i); end% profile on% tic% [BS_J13, orderSEM03, BIC_scoreSEM03, L] = learn_struct_EM(bnet_vide, data, nbloopmax*4);% toc% profile off% profile report sem_Jouet3_3% BS_J13.dag% % BICS = get_BIC(BS_J13, data)% BICS2 = get_BICL(BS_J13, L(end) ,m)% % profile on% tic% [BTS_J13, orderMWSTSEM03, BIC_scoreMWSTSEM03, L] = learn_struct_EM(BT_J13, data, nbloopmax*3);% toc% profile off% profile report sem_plus_t_Jouet3_3% BTS_J13.dag% % BICTS = get_BIC(BTS_J13, data)% BICTS2 = get_BICL(BTS_J13, L(end) ,m)% save jouet3_3% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %  clear all;% %  close all;% %  disp('Jouet2 1');% %  N=6;% %  dagO = zeros(N);% %  dagO(1,[2,3])=1;% %  dagO(2,4)=1;% %  dagO(3,[5 6])=1;% %  draw_graph(dagO);% %  % %  node_sizes=2*ones(1,N);% %  bnetO = mk_bnet(dagO, node_sizes);% %  bnetO.CPD{1} = tabular_CPD(bnetO, 1, [0.2 0.8]);% %  bnetO.CPD{2} = tabular_CPD(bnetO, 2, [0.1 0.6 0.9 0.4]);% %  bnetO.CPD{3} = tabular_CPD(bnetO, 3, [0.3 0.5 0.7 0.5]);% %  bnetO.CPD{4} = tabular_CPD(bnetO, 4, [0.35 0.05 0.65 0.95]);% %  bnetO.CPD{5} = tabular_CPD(bnetO, 5, [0.25 0.15 0.75 0.85]);% %  bnetO.CPD{6} = tabular_CPD(bnetO, 6, [0.02 0.12 0.98 0.88]);% %  % %  m = 500;% %  for l=1:m, dataO(:,l) = sample_bnet(bnetO); end% %  % %  DM = 0.1% %  rand('state',0); randn('state',0);% %  vide = rand(size(dataO))<(1-DM);% %  data = bnt_to_mat(dataO);% %  data = data.*vide;% %  data = mat_to_bnt(data,0);% %  % %  nbloopmax = 5;% %  root = 1;% %  prior = 0;% %  discrete = 1:N;% %  profile on% %  tic% %  [BT_J21, Sbest7,L] = learn_struct_mwst_EM(data, discrete, node_sizes, prior, root, nbloopmax);% %  toc% %  profile off% %  profile report mwstem_jouet2_1% %  BT_J21.dag% %  % %  BICT = get_BIC(BT_J21, data)% %  BICT2 = get_BICL(BT_J21, L(end) ,m)% %  % %  bnet_vide = mk_bnet(zeros(N),node_sizes);% %  for i=1:N, bnet_vide.CPD{i} = tabular_CPD(bnet_vide, i); end% %  profile on% %  tic% %  [BS_J21, orderSEM7, BIC_scoreSEM7,L] = learn_struct_EM(bnet_vide, data, nbloopmax*4)% %  toc% %  profile off% %  profile report sem_jouet2_1% %  BS_J21.dag% %  % %  BICS = get_BIC(BS_J21, data)% %  BICS2 = get_BICL(BS_J21, L(end) ,m)% %  % %  profile on% %  tic% %  [BTS_J21, orderMWSTSEM7, BIC_scoreMWSTSEM7,L] = learn_struct_EM(BT_J21, data, nbloopmax*3)% %  toc% %  profile off% %  profile report sem_plus_t_jouet2_1% %  BTS_J21.dag% %  % %  BICTS = get_BIC(BTS_J21, data)% %  BICTS2 = get_BICL(BTS_J21, L(end) ,m)% %  save jouet2_1% %  % %  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %  clear all;% %  close all;% %  disp('Jouet2 2');% %  N=6;% %  dagO = zeros(N);% %  dagO(1,[2,3])=1;% %  dagO(2,4)=1;% %  dagO(3,[5 6])=1;% %  draw_graph(dagO);% %  % %  node_sizes=2*ones(1,N);% %  bnetO = mk_bnet(dagO, node_sizes);% %  bnetO.CPD{1} = tabular_CPD(bnetO, 1, [0.2 0.8]);% %  bnetO.CPD{2} = tabular_CPD(bnetO, 2, [0.1 0.6 0.9 0.4]);% %  bnetO.CPD{3} = tabular_CPD(bnetO, 3, [0.3 0.5 0.7 0.5]);% %  bnetO.CPD{4} = tabular_CPD(bnetO, 4, [0.35 0.05 0.65 0.95]);% %  bnetO.CPD{5} = tabular_CPD(bnetO, 5, [0.25 0.15 0.75 0.85]);% %  bnetO.CPD{6} = tabular_CPD(bnetO, 6, [0.02 0.12 0.98 0.88]);% %  % %  m = 500;% %  for l=1:m, dataO(:,l) = sample_bnet(bnetO); end% %  % %  DM = 0.2% %  rand('state',0); randn('state',0);% %  vide = rand(size(dataO))<(1-DM);% %  data = bnt_to_mat(dataO);% %  data = data.*vide;% %  data = mat_to_bnt(data,0);% %  % %  nbloopmax = 5;% %  root = 1;% %  prior = 0;% %  discrete = 1:N;% %  profile on% %  tic% %  [BT_J22, Sbest7,L] = learn_struct_mwst_EM(data, discrete, node_sizes, prior, root, nbloopmax);% %  toc% %  profile off% %  profile report mwstem_jouet2_2% %  BT_J22.dag% %  % %  BICT = get_BIC(BT_J22, data)% %  BICT2 = get_BICL(BT_J22, L(end) ,m)% %  % %  bnet_vide = mk_bnet(zeros(N),node_sizes);% %  for i=1:N, bnet_vide.CPD{i} = tabular_CPD(bnet_vide, i); end% %  profile on% %  tic% %  [BS_J22, orderSEM7, BIC_scoreSEM7,L] = learn_struct_EM(bnet_vide, data, nbloopmax*4);% %  toc% %  profile off% %  profile report sem_jouet2_2% %  BS_J22.dag% %  % %  BICS = get_BIC(BS_J22, data)% %  BICS2 = get_BICL(BS_J22, L(end) ,m)% %  % %  profile on% %  tic% %  [BTS_J22, orderMWSTSEM7, BIC_scoreMWSTSEM7,L] = learn_struct_EM(BT_J22, data, nbloopmax*3);% %  toc% %  profile off% %  profile report sem_plus_t_jouet2_2% %  BTS_J22.dag% %  % %  BICTS = get_BIC(BTS_J22, data)% %  BICTS2 = get_BICL(BTS_J22, L(end) ,m)% %  save jouet2_2% %  % %  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %  clear all;% %  close all;% %  disp('Jouet2 3');% %  N=6;% %  dagO = zeros(N);% %  dagO(1,[2,3])=1;% %  dagO(2,4)=1;% %  dagO(3,[5 6])=1;% %  draw_graph(dagO);% %  % %  node_sizes=2*ones(1,N);% %  bnetO = mk_bnet(dagO, node_sizes);% %  bnetO.CPD{1} = tabular_CPD(bnetO, 1, [0.2 0.8]);% %  bnetO.CPD{2} = tabular_CPD(bnetO, 2, [0.1 0.6 0.9 0.4]);% %  bnetO.CPD{3} = tabular_CPD(bnetO, 3, [0.3 0.5 0.7 0.5]);% %  bnetO.CPD{4} = tabular_CPD(bnetO, 4, [0.35 0.05 0.65 0.95]);% %  bnetO.CPD{5} = tabular_CPD(bnetO, 5, [0.25 0.15 0.75 0.85]);% %  bnetO.CPD{6} = tabular_CPD(bnetO, 6, [0.02 0.12 0.98 0.88]);% %  % %  m = 500;% %  for l=1:m, dataO(:,l) = sample_bnet(bnetO); end% %  % %  DM = 0.3% %  rand('state',0); randn('state',0);% %  vide = rand(size(dataO))<(1-DM);% %  data = bnt_to_mat(dataO);% %  data = data.*vide;% %  data = mat_to_bnt(data,0);% %  % %  nbloopmax = 5;% %  root = 1;% %  prior = 0;% %  discrete = 1:N;% %  profile on% %  tic% %  [BT_J23, Sbest7,L] = learn_struct_mwst_EM(data, discrete, node_sizes, prior, root, nbloopmax);% %  toc% %  profile off% %  profile report mwstem_jouet2_3% %  BT_J23.dag% %  % %  BICT = get_BIC(BT_J23, data)% %  BICT2 = get_BICL(BT_J23, L(end) ,m)% %  % %  bnet_vide = mk_bnet(zeros(N),node_sizes);% %  for i=1:N, bnet_vide.CPD{i} = tabular_CPD(bnet_vide, i); end% %  profile on% %  tic% %  [BS_J23, orderSEM7, BIC_scoreSEM7,L] = learn_struct_EM(bnet_vide, data, nbloopmax*4);% %  toc% %  profile off% %  profile report sem_jouet2_3% %  BS_J23.dag% %  % %  BICS = get_BIC(BS_J23, data)% %  BICS2 = get_BICL(BS_J23, L(end) ,m)% %  % %  profile on% %  tic% %  [BTS_J23, orderMWSTSEM7, BIC_scoreMWSTSEM7,L] = learn_struct_EM(BT_J23, data, nbloopmax*3);% %  toc% %  profile off% %  profile report sem_plus_t_jouet2_3% %  BTS_J23.dag% %  % %  BICTS = get_BIC(BTS_J23, data)% %  BICTS2 = get_BICL(BTS_J23, L(end) ,m)% %  save jouet2_3% %  % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %  clear all;% %  close all;% %  disp('Australian 1');% %  load austr% %  class_node=15;% %  rand('state',0);randn('state',0);% %  melange=1:size(austr,2);% %  app=austr(:,melange); clear austr% %  Napp=500; %Napp=round(size(app,2)*0.7);% %  %Ntest=size(app,2)-Napp;% %  %test=app(:,Napp+1:size(app,2));% %  node_sizes = max(app')% %  % %  DM = 0.1

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -