📄 learn_struct_ges_new.m.svn-base
字号:
function [cpdag, best_score, cache] = learn_struct_ges_new(data, nodesizes, varargin)%% LEARN_STRUCT_GES learns a structure of Bayesian net by Greedy Equivalence Search.% cpdag = learn_struct_ges(Data, Nodesizes, 'cache', cache, 'scoring_fn', 'bic', 'verbose', 'yes')%% cpdag: the final cpdag% Data : training data, data(i,m) is the m obsevation of node i% Nodesizes: the size array of different nodes% cache : data structure used to memorize local score computations% (cf. SCORE_INIT_CACHE function)%% V1.1 : 28 july 2003 (Ph. Leray)%% Ref:% Optimal Structure Identification with Greedy Search, Chickering 2002%[N ncases] = size(data);seeddag = zeros(N,N);% set default paramsscoring_fn = 'bayesian';verbose = 0;cache=[]; % get paramsargs = varargin;nargs = length(args);if length(args) > 0 if isstr(args{1}) for i = 1:2:nargs switch args{i} case 'scoring_fn', scoring_fn = args{i+1}; case 'verbose', verbose = strcmp(args{i+1},'yes'); case 'cache', cache=args{i+1} ; end; end; end;end;if verbose names=cellstr(int2str((1:N)')); carre=zeros(N,1);enddone = 0;%[best_score cache] = score_dags(data,nodesizes, {seeddag},'scoring_fn',scoring_fn,'cache',cache);best_score = -Inf;cptt=0;dag = seeddag;% First step : INSERTwhile ~done cptt=cptt+1; %seeddag, A=pdag_to_dag(seeddag), [pdags,nodes] = mk_nbrs_of_pdag_add(seeddag); seedold=seeddag; sold=best_score; nbrs = length(pdags); dags=pdag_to_dag(pdags); [scores cache] = score_dags(data, nodesizes, dags,'scoring_fn',scoring_fn,'cache',cache); %max_score = max(scores); %new = find(scores == max_score ); [max_scores, news] = sort(scores); newl=length(news); new=news(newl); pdag = pdags{new}; while ~isdag(dags{new}) %isempty(dags{new}) newl=newl-1; disp('This pdag does not admit any extension --> continu with another one.') new=news(newl); pdag = pdags{new}; end max_score = max_scores(newl); dag = dags{new}; %if ~isempty(new) %p = sample_discrete(normalise(ones(1, length(new)))); %dag = dags{new(p)}; %notlinked = 0; %for i=1:N, par=find(dag(:,i)==1); son=find(dag(i,:)==1); notlinked=notlinked+ ((length(par)+length(son))==0); end %tooempty = notlinked>ceil(N/8); tooempty = 0; if tooempty | (max_score > best_score) %if (max_score <= best_score), fprintf('too empty graph --> continu'); end fprintf('+'); best_score = max_score; %dag seeddag = dag_to_cpdag(dag); if isempty(pdag_to_dag(seeddag)), warning('This network is not consistant --> loosing optimality'); seeddag = cpdag_to_dag(seeddag); end %new=new(p); if verbose figure; subplot(1,2,1), [xx yy]=draw_graph(seedold,names,carre); set(gca,'color',[1 1 0]); title(sprintf('current CPDAG (Smax=%5.2f)',sold)); subplot(1,2,2), draw_graph(seeddag,names,carre,xx,yy); s=sprintf(' %d',nodes{new,3}); title([sprintf('Best in N+ = INSERT(%d, %d,',nodes{new,1},nodes{new,2}) s ')' sprintf(' S=%5.2f',max_score)]); drawnow; end else done = 1; end %else % error('structure non instantiable ???') %end;end;done = 0;cptt=0;[best_score cache] = score_dags(data, nodesizes, {dag},'scoring_fn',scoring_fn,'cache',cache);%dag,%best_score, % Second step : DELETEwhile ~done cptt=cptt+1; %seeddag, A=pdag_to_dag(seeddag), [pdags,nodes] = mk_nbrs_of_pdag_del(dag); seedold=seeddag; sold=best_score; nbrs = length(pdags); dags=pdag_to_dag(pdags); [scores cache] = score_dags(data, nodesizes, dags,'scoring_fn',scoring_fn,'cache',cache); max_score = max(scores); new = find(scores == max_score ); if ~isempty(new) & (max_score > best_score) p = sample_discrete(normalise(ones(1, length(new)))); best_score = max_score; dag = dags{new(p)} seeddag = dag_to_cpdag(dag); fprintf('-'); new=new(p); if verbose cpdags=dag_to_cpdag(dags); figure; subplot(1,2,1), [xx yy]=draw_graph(seedold,names,carre); set(gca,'color',[1 1 0]); title(sprintf('current CPDAG (Smax=%5.2f)',best_score)); subplot(1,2,2), draw_graph(seeddag,names,carre,xx,yy); s=sprintf('%d',nodes{new,3}); title([sprintf('Best in N- = DELETE(%d, %d,',nodes{new,1},nodes{new,2}) s ')' sprintf(' S=%5.2f',max_score)]); drawnow; end else done = 1; %[best_score cache] = score_dags(data, nodesizes, {dag},'scoring_fn',scoring_fn,'cache',cache); %dag, %best_score, cpdag = dag_to_cpdag(dag); end;end;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function G2 = pdag_to_dag(pdags)% same as pdag_to_dag without warningsif ~iscell(pdags) pdag=cell(1,1); pdag{1}=pdags;else pdag=pdags;endfor da=1:length(pdag) %fprintf('%d ',da) G=pdag{da}; G2 = G; A = G; N = size(G,1); empty_loop = 0; while ~isempty(find(A)) [x x_y_undirected] = select_vertex(A); if x==0, G2=[]; break, end, G2(x,x_y_undirected) = 0; G2(x_y_undirected,x) = 1; A(x,:) = 0; A(:,x) = 0; end dags{da}=G2;endif ~iscell(pdags) G2=dags{1};else G2=dags;end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function [sol, x_y] = select_vertex(G)N = size(G,1);sol = 0;x = 0;fini=0 ;while ~fini x = x+1; if x>N fini=1; else beforex=find(G(:,x)); afterx=find(G(x,:)); if ~(isempty(beforex)&isempty(afterx)) x_y = myintersect(beforex,afterx); beforex=mysetdiff(beforex,x_y); afterx=mysetdiff(afterx,x_y); if isempty(afterx) % x is a sink Ax= myunion(x_y,beforex); for y=x_y % Adjacents of y Ay = myunion(find(G(:,y)), find(G(y,:))); Ay = myunion(Ay,y); if isempty(setdiff(Ax,Ay)) fini=fini+1; else break; end end if fini==size(x_y) sol=x; fini=1; else fini=0; end end end endend % while%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function b = isdag(G)b = sum(sum(G.*G')); % How many undirected arcs ? (x2)b=~b & ~isempty(G);if b M = expm(full(G)) - eye(length(G)); M = (M>0); b = b & find(sum(sum(eye(length(G)).*M))); % is there no cycle ?end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -