⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 learn_struct_ges.m.svn-base

📁 bayesian network structrue learning matlab program
💻 SVN-BASE
字号:
function [cpdag, best_score, cache] = learn_struct_ges(data, nodesizes, varargin)%% LEARN_STRUCT_GES learns a structure of Bayesian net by Greedy Equivalence Search.% cpdag = learn_struct_ges(Data, Nodesizes, 'cache', cache, 'scoring_fn', 'bic', 'verbose', 'yes')%% cpdag: the final cpdag% Data : training data, data(i,m) is the m obsevation of node i% Nodesizes: the size array of different nodes% cache : data structure used to memorize local score computations%   (cf. SCORE_INIT_CACHE function)%% V1.1 : 28 july 2003 (Ph. Leray)%% Ref:%   Optimal Structure Identification with Greedy Search, Chickering 2002%[N ncases] = size(data);seeddag = zeros(N,N);% set default paramsscoring_fn = 'bayesian';verbose  = 0;cache=[];    % get paramsargs = varargin;nargs = length(args);if length(args) > 0    if isstr(args{1})        for i = 1:2:nargs            switch args{i}            case 'scoring_fn', scoring_fn = args{i+1};            case 'verbose',  verbose  = strcmp(args{i+1},'yes');            case 'cache',  cache=args{i+1} ;            end;        end;    end;end;if verbose    names=cellstr(int2str((1:N)'));    carre=zeros(N,1);enddone = 0;[best_score cache] = score_dags(data,nodesizes, {seeddag},'scoring_fn',scoring_fn,'cache',cache);cptt=0;% First step : INSERTwhile ~done    cptt=cptt+1;    [pdags,nodes] = mk_nbrs_of_pdag_add(seeddag);    seedold=seeddag;    sold=best_score;    nbrs = length(pdags);    dags=pdag_to_dag(pdags);    [scores cache] = score_dags(data, nodesizes, dags,'scoring_fn',scoring_fn,'cache',cache);    max_score = max(scores);    new = find(scores == max_score );    if ~isempty(new) & (max_score > best_score)        p = sample_discrete(normalise(ones(1, length(new))));        best_score = max_score;        seeddag = dag_to_cpdag(dags{new(p)});        new=new(p);        if verbose            figure;            subplot(1,2,1), [xx yy]=draw_graph(seedold,names,carre);              set(gca,'color',[1 1 0]);             title(sprintf('current CPDAG (Smax=%5.2f)',sold));            subplot(1,2,2), draw_graph(seeddag,names,carre,xx,yy);                 s=sprintf(' %d',nodes{new,3});            title([sprintf('Best in N+ = INSERT(%d, %d,',nodes{new,1},nodes{new,2}) s ')' sprintf('  S=%5.2f',max_score)]);            drawnow;        end            else        done = 1;    end;            end;done = 0;%[best_score cache] = score_dags(data,nodesizes, {seeddag},'scoring_fn',scoring_fn,'cache',cache);cptt=0;% Second step : DELETEwhile ~done    cptt=cptt+1;    [pdags,nodes] = mk_nbrs_of_pdag_del(seeddag);    seedold=seeddag; sold=best_score;    nbrs = length(pdags);    dags=pdag_to_dag(pdags);    [scores cache] = score_dags(data, nodesizes, dags,'scoring_fn',scoring_fn,'cache',cache);    max_score = max(scores);    new = find(scores == max_score );    if ~isempty(new) & (max_score > best_score)        p = sample_discrete(normalise(ones(1, length(new))));        best_score = max_score;        seeddag = dag_to_cpdag(dags{new(p)});        new=new(p);        if verbose            cpdags=dag_to_cpdag(dags);            figure;             subplot(1,2,1), [xx yy]=draw_graph(seedold,names,carre);              set(gca,'color',[1 1 0]);             title(sprintf('current CPDAG (Smax=%5.2f)',best_score));            subplot(1,2,2), draw_graph(seeddag,names,carre,xx,yy);                 s=sprintf('%d',nodes{new,3});            title([sprintf('Best in N- = DELETE(%d, %d,',nodes{new,1},nodes{new,2}) s ')' sprintf('  S=%5.2f',max_score)]);            drawnow;        end            else        done = 1;    end;    end;cpdag = seeddag;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -