📄 learn_struct_ges.m.svn-base
字号:
function [cpdag, best_score, cache] = learn_struct_ges(data, nodesizes, varargin)%% LEARN_STRUCT_GES learns a structure of Bayesian net by Greedy Equivalence Search.% cpdag = learn_struct_ges(Data, Nodesizes, 'cache', cache, 'scoring_fn', 'bic', 'verbose', 'yes')%% cpdag: the final cpdag% Data : training data, data(i,m) is the m obsevation of node i% Nodesizes: the size array of different nodes% cache : data structure used to memorize local score computations% (cf. SCORE_INIT_CACHE function)%% V1.1 : 28 july 2003 (Ph. Leray)%% Ref:% Optimal Structure Identification with Greedy Search, Chickering 2002%[N ncases] = size(data);seeddag = zeros(N,N);% set default paramsscoring_fn = 'bayesian';verbose = 0;cache=[]; % get paramsargs = varargin;nargs = length(args);if length(args) > 0 if isstr(args{1}) for i = 1:2:nargs switch args{i} case 'scoring_fn', scoring_fn = args{i+1}; case 'verbose', verbose = strcmp(args{i+1},'yes'); case 'cache', cache=args{i+1} ; end; end; end;end;if verbose names=cellstr(int2str((1:N)')); carre=zeros(N,1);enddone = 0;[best_score cache] = score_dags(data,nodesizes, {seeddag},'scoring_fn',scoring_fn,'cache',cache);cptt=0;% First step : INSERTwhile ~done cptt=cptt+1; [pdags,nodes] = mk_nbrs_of_pdag_add(seeddag); seedold=seeddag; sold=best_score; nbrs = length(pdags); dags=pdag_to_dag(pdags); [scores cache] = score_dags(data, nodesizes, dags,'scoring_fn',scoring_fn,'cache',cache); max_score = max(scores); new = find(scores == max_score ); if ~isempty(new) & (max_score > best_score) p = sample_discrete(normalise(ones(1, length(new)))); best_score = max_score; seeddag = dag_to_cpdag(dags{new(p)}); new=new(p); if verbose figure; subplot(1,2,1), [xx yy]=draw_graph(seedold,names,carre); set(gca,'color',[1 1 0]); title(sprintf('current CPDAG (Smax=%5.2f)',sold)); subplot(1,2,2), draw_graph(seeddag,names,carre,xx,yy); s=sprintf(' %d',nodes{new,3}); title([sprintf('Best in N+ = INSERT(%d, %d,',nodes{new,1},nodes{new,2}) s ')' sprintf(' S=%5.2f',max_score)]); drawnow; end else done = 1; end; end;done = 0;%[best_score cache] = score_dags(data,nodesizes, {seeddag},'scoring_fn',scoring_fn,'cache',cache);cptt=0;% Second step : DELETEwhile ~done cptt=cptt+1; [pdags,nodes] = mk_nbrs_of_pdag_del(seeddag); seedold=seeddag; sold=best_score; nbrs = length(pdags); dags=pdag_to_dag(pdags); [scores cache] = score_dags(data, nodesizes, dags,'scoring_fn',scoring_fn,'cache',cache); max_score = max(scores); new = find(scores == max_score ); if ~isempty(new) & (max_score > best_score) p = sample_discrete(normalise(ones(1, length(new)))); best_score = max_score; seeddag = dag_to_cpdag(dags{new(p)}); new=new(p); if verbose cpdags=dag_to_cpdag(dags); figure; subplot(1,2,1), [xx yy]=draw_graph(seedold,names,carre); set(gca,'color',[1 1 0]); title(sprintf('current CPDAG (Smax=%5.2f)',best_score)); subplot(1,2,2), draw_graph(seeddag,names,carre,xx,yy); s=sprintf('%d',nodes{new,3}); title([sprintf('Best in N- = DELETE(%d, %d,',nodes{new,1},nodes{new,2}) s ')' sprintf(' S=%5.2f',max_score)]); drawnow; end else done = 1; end; end;cpdag = seeddag;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -