⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 score_family.m.svn-base

📁 bayesian network structrue learning matlab program
💻 SVN-BASE
字号:
function [score, cache] = score_family(j, ps, node_type, scoring_fn, ns, discrete, data, args, cache)% SCORE_FAMILY_COMPLETE Compute the score of a node and its parents given completely observed data% score = score_family(j, ps, node_type, scoring_fn, ns, discrete, data, args, cache)%% data(i,m) is the value of node i in case m (can be a cell array)% args is a cell array containing optional arguments passed to the constructor,% or is [] if none% cache is a data structure used to memorize local score computations % (cf. SCORE_INIT_CACHE function)%% We create a whole Bayes net which only connects parents to node,% where node has a CPD of the specified type (with default parameters).% We then evaluate its score ('bic' or 'bayesian')% We should use a cache to avoid unnecessary computation.% In particular, log_marginal_prob_node for tabular CPDs calls gammaln% and compute_counts, both of which are slow.%% (Caching implementation : olivier.francois@insa-rouen.fr, philippe.leray@insa-rouen.fr)%if (nargin<9 | isempty(cache)) , c=0; else c=1; end%ticif c==1    [b,score]=score_find_in_cache(cache,j,ps,scoring_fn);else    b=0;end%Tfind=tocif b==0    [n ncases] = size(data);    dag = zeros(n,n);    if ~isempty(ps), dag(ps, j) = 1; end    bnet = mk_bnet(dag, ns, 'discrete', discrete);    fname = sprintf('%s_CPD', node_type);    if isempty(args)        bnet.CPD{j} = feval(fname, bnet, j);    else        bnet.CPD{j} = feval(fname, bnet, j, args{:});    end      %tic      switch scoring_fn    case 'bic',        fam = [ps j];        %bnet.CPD{j} = learn_params(bnet.CPD{j}, data(fam, :));        bnet.CPD{j} = learn_params(bnet.CPD{j}, fam, data, ns, bnet.cnodes);        L = log_prob_node(bnet.CPD{j}, data(j,:), data(ps,:));        S = struct(bnet.CPD{j}); % violate object privacy        score = L - 0.5*S.nparams*log(ncases);    case 'bayesian',        score = log_marg_prob_node(bnet.CPD{j}, data(j,:), data(ps,:));    otherwise,        error(['unrecognized scoring fn ' scoring_fn]);    end    %Tcalc=toc    %tic      if c==1%             fprintf('a\n')        cache=score_add_to_cache(cache,j,ps,score,scoring_fn);    end    %Tecr=toc% else%     fprintf('*\n')end%===========================Inner functionsfunction [cache, place] = score_add_to_cache(cache,j,ps,score,scoring_fn)% [cache place] = score_add_to_cache(cache,j,ps,score,scoring_fn)% % j is the son node,% ps is the list of parents of j, for example [12 5 7],% score is the score to add for this familly.% scoring_fn is 'bic' or 'bayesian'.%% place = where the entry was add.%% example for 2 nodes with cache of size 5 :%% cache =%   Nw  b        0      0      0 --> Nw=number of writings in cache (+1) and b==1 iff the cache is full%   0   0        1   -239.12   1  --> 1st familly in the cache (node 1 without parents) calculate with bic%   0   0        2   -318.98   1%   1   0        2   -189.23   2  --> 3rd familly in the cache (node 2 with 1 as parent) calculate with bay閟ian%   0   1        1   -251.09   1% .ps2bool.      j    score  1or2 --> new entry%   |   |        |      |      |%   |   |        |      |      |___> scoring function : 1 for 'bic' or 2 for 'bayesian'%   |   |        |      |__________> score of the familly%   |   |        |_________________> son node of the familly%   |   |__________________________> ==1 iff node 2 is parent of son node%   |______________________________> ==1 iff node 1 is parent of son node%% If the cache is FULL then the new place is RanDomly choose.%% V1.1 : 5 may 2003 (O. Francois, Ph. Leray)N=size(cache,2)-3;L=size(cache,1)-1;cache_full=cache(1,2) ;place=0;if ismember(j,ps)    disp('This is a cyclic entry, nothing was done.');elseif j>N | j<=0    disp('This entry is not valid, nothing was done.');else    switch scoring_fn    case 'bic',        fn=1;    case 'bayesian',        fn=2;    otherwise,        error(['unrecognized scoring fn ' scoring_fn]);         end        if ~cache_full        place=cache(1,1);    else    [ignore place]=max(rand(1,L)); place=place+1;    end        cache(place,:)=0;    cache(place,ps)=1;    cache(place,N+1)=j;    cache(place,N+2)=score;    cache(place,N+3)=fn;        cache(1,1)=place+1;    if place>L | cache(1,2)~=0        cache(1,2)=1;    endend  %=========================================================================================function [bool, score] = score_find_in_cache(cache,j,ps,scoring_fn)% cache = score_find_in_cache(cache,j,ps,scoring_fn)%% V1.1 : 5 may 2003 (O. Francois, Ph. Leray)%ticL=size(cache,1)-1;N=size(cache,2)-3;if N<1    bool=0;    score=0;    returnendparents=zeros(1,N);parents(ps)=1;  %parents(N+1)=j;switch scoring_fncase 'bic',    fn=1;case 'bayesian',    fn=2;otherwise,    error(['unrecognized scoring fn ' scoring_fn]);     end%parent = str2num(num2str(parents,'%1d'));%[tmp y]=find(cache(:,N+3)==fn);%if ~isempty(tmp)%  [tmp2 y]=find(str2num(num2str(cache(tmp,1:N+1),'%1d'))==parent);%  candidats=tmp(tmp2);%else%  candidats=[];%endtmp=find(cache(2:L+1,N+3)==fn);tmp=tmp+1;tmp2=find(cache(tmp,N+1)==j);candidats=tmp(tmp2);i=1;while i<=N & ~isempty(candidats)    tmp=find(cache(candidats,i)==parents(i));    candidats=candidats(tmp);    i=i+1;end%Tpre=tocbool=~isempty(candidats);if bool    score=cache(candidats(1),N+2);else    score=0;end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -