📄 score_family.asv.svn-base
字号:
function [score, cache] = score_family(j, ps, node_type, scoring_fn, ns, discrete, data, args, cache)% SCORE_FAMILY_COMPLETE Compute the score of a node and its parents given completely observed data% score = score_family(j, ps, node_type, scoring_fn, ns, discrete, data, args, cache)%% data(i,m) is the value of node i in case m (can be a cell array)% args is a cell array containing optional arguments passed to the constructor,% or is [] if none% cache is a data structure used to memorize local score computations % (cf. SCORE_INIT_CACHE function)%% We create a whole Bayes net which only connects parents to node,% where node has a CPD of the specified type (with default parameters).% We then evaluate its score ('bic' or 'bayesian')% We should use a cache to avoid unnecessary computation.% In particular, log_marginal_prob_node for tabular CPDs calls gammaln% and compute_counts, both of which are slow.%% (Caching implementation : olivier.francois@insa-rouen.fr, philippe.leray@insa-rouen.fr)%if (nargin<9 | isempty(cache)) , c=0; else c=1; end%ticif c==1 [b,score]=score_find_in_cache(cache,j,ps,scoring_fn);else b=0;end%Tfind=tocif b==0 [n ncases] = size(data); dag = zeros(n,n); if ~isempty(ps), dag(ps, j) = 1; end bnet = mk_bnet(dag, ns, 'discrete', discrete); fname = sprintf('%s_CPD', node_type); if isempty(args) bnet.CPD{j} = feval(fname, bnet, j); else bnet.CPD{j} = feval(fname, bnet, j, args{:}); end %tic switch scoring_fn case 'bic', fam = [ps j]; bnet.CPD{j} = learn_params(bnet.CPD{j}, data(fam, :)); %bnet.CPD{j} = learn_params(bnet.CPD{j}, fam, data, ns, bnet.cnodes); L = log_prob_node(bnet.CPD{j}, data(j,:), data(ps,:)); S = struct(bnet.CPD{j}); % violate object privacy score = L - 0.5*S.nparams*log(ncases); case 'bayesian', score = log_marg_prob_node(bnet.CPD{j}, data(j,:), data(ps,:)); otherwise, error(['unrecognized scoring fn ' scoring_fn]); end %Tcalc=toc %tic if c==1% fprintf('a\n') cache=score_add_to_cache(cache,j,ps,score,scoring_fn); end %Tecr=toc% else% fprintf('*\n')end%===========================Inner functionsfunction [cache, place] = score_add_to_cache(cache,j,ps,score,scoring_fn)% [cache place] = score_add_to_cache(cache,j,ps,score,scoring_fn)% % j is the son node,% ps is the list of parents of j, for example [12 5 7],% score is the score to add for this familly.% scoring_fn is 'bic' or 'bayesian'.%% place = where the entry was add.%% example for 2 nodes with cache of size 5 :%% cache =% Nw b 0 0 0 --> Nw=number of writings in cache (+1) and b==1 iff the cache is full% 0 0 1 -239.12 1 --> 1st familly in the cache (node 1 without parents) calculate with bic% 0 0 2 -318.98 1% 1 0 2 -189.23 2 --> 3rd familly in the cache (node 2 with 1 as parent) calculate with bay閟ian% 0 1 1 -251.09 1% .ps2bool. j score 1or2 --> new entry% | | | | |% | | | | |___> scoring function : 1 for 'bic' or 2 for 'bayesian'% | | | |__________> score of the familly% | | |_________________> son node of the familly% | |__________________________> ==1 iff node 2 is parent of son node% |______________________________> ==1 iff node 1 is parent of son node%% If the cache is FULL then the new place is RanDomly choose.%% V1.1 : 5 may 2003 (O. Francois, Ph. Leray)N=size(cache,2)-3;L=size(cache,1)-1;cache_full=cache(1,2) ;place=0;if ismember(j,ps) disp('This is a cyclic entry, nothing was done.');elseif j>N | j<=0 disp('This entry is not valid, nothing was done.');else switch scoring_fn case 'bic', fn=1; case 'bayesian', fn=2; otherwise, error(['unrecognized scoring fn ' scoring_fn]); end if ~cache_full place=cache(1,1); else [ignore place]=max(rand(1,L)); place=place+1; end cache(place,:)=0; cache(place,ps)=1; cache(place,N+1)=j; cache(place,N+2)=score; cache(place,N+3)=fn; cache(1,1)=place+1; if place>L | cache(1,2)~=0 cache(1,2)=1; endend %=========================================================================================function [bool, score] = score_find_in_cache(cache,j,ps,scoring_fn)% cache = score_find_in_cache(cache,j,ps,scoring_fn)%% V1.1 : 5 may 2003 (O. Francois, Ph. Leray)%ticL=size(cache,1)-1;N=size(cache,2)-3;if N<1 bool=0; score=0; returnendparents=zeros(1,N);parents(ps)=1; %parents(N+1)=j;switch scoring_fncase 'bic', fn=1;case 'bayesian', fn=2;otherwise, error(['unrecognized scoring fn ' scoring_fn]); end%parent = str2num(num2str(parents,'%1d'));%[tmp y]=find(cache(:,N+3)==fn);%if ~isempty(tmp)% [tmp2 y]=find(str2num(num2str(cache(tmp,1:N+1),'%1d'))==parent);% candidats=tmp(tmp2);%else% candidats=[];%endtmp=find(cache(2:L+1,N+3)==fn);tmp=tmp+1;tmp2=find(cache(tmp,N+1)==j);candidats=tmp(tmp2);i=1;while i<=N & ~isempty(candidats) tmp=find(cache(candidats,i)==parents(i)); candidats=candidats(tmp); i=i+1;end%Tpre=tocbool=~isempty(candidats);if bool score=cache(candidats(1),N+2);else score=0;end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -