⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 soradna1.m

📁 一个计算海天背景的工程模型。由matlab编写
💻 M
字号:
function [z,sorad]=soradna1(yd,yr,long,lat)

% SORADNA1: computes no-sky solar radiation and solar altitude.

% [z,sorad]=SORADNA1(yd,yr,long,lat) computes instantaneous values of 

% solar radiation and solar altitude from yearday, year, and position 

% data. It is put together from expressions taken from Appendix E in the

% 1978 edition of Almanac for Computers, Nautical Almanac Office, U.S.

% Naval Observatory. They are reduced accuracy expressions valid for the

% years 1800-2100. Solar declination computed from these expressions is

% accurate to at least 1'. The solar constant (1368.0 W/m^2) represents a 

% mean of satellite measurements made over the last sunspot cycle (1979-1995) 

% taken from Coffey et al (1995), Earth System Monitor, 6, 6-10.  Assumes 

% yd is either a column or row vector, the other input variables are scalars,

% OR yd is a scalar, the other inputs matrices.

%

%  INPUT:   yd   - decimal yearday (e.g., 0000Z Jan 1 is 0.0)

%           yr   - year (e.g., 1995)

%           long - longitude (west is positive!) [deg] 

%           lat  - latitude  [deg]

%

%  OUTPUT:  z    - solar altitude [deg]

%           sorad- no atmosphere solar radiation  [W/m^2]



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 3/8/97: version 1.0

% 8/28/98: version 1.1 (vectorized by RP)

% 8/5/99: version 2.0

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



% get constants

as_consts; 



% convert yd to column vector if necessary

[n,m]=size(yd);

if m > n

  yd=yd';

end



% convert yearday to calender time

gtime=greg2(yd,yr);



SC=gtime(:,6);

MN=fix(gtime(:,5));

HR=fix(gtime(:,4));

D=fix(gtime(:,3));

M=fix(gtime(:,2));

Y=fix(gtime(:,1));



% convert to new variables

LONG=long;

LAT=lat;



% two options - either long/lat are vectors, time is a scalar



if length(LONG)==1 & length(LAT)>1,

 LONG=LONG(ones(size(LAT)));

elseif length(LONG)>1 & length(LAT)==1,

 LAT=LAT(ones(size(LAT)));

end;

  

if length(SC)==1,

 osiz=ones(size(LONG));

 SC=SC(osiz);

 MN=MN(osiz);

 HR=HR(osiz);

 D=D(osiz);

 M=M(osiz);

 Y=Y(osiz);

elseif length(LONG)==1,

 LONG=LONG(ones(size(SC)));

 LAT=LAT(ones(size(SC)));

end;



% constants

   DTR=3.14159265/180;

   RTD=1./DTR;



% compute Universal Time in hours

   UT = HR+(MN+SC./60.)./60;



% compute Julian ephemeris date in days (Day 1 is 1 Jan 4713 B.C.=-4712 Jan 1)

  JED=367.*Y-fix(7.*(Y+fix((M+9)./12))./4)+fix(275.*M./9)+D+1721013 + UT./24;



% compute interval in Julian centuries since 1900

    T=(JED-2415020.0)./36525;



% compute mean anomaly of the sun

    G=358.475833+35999.049750.*T-.000150.*T.^2;

   NG=fix(G./360);

    G=(G-NG.*360).*DTR;



% compute mean longitude of sun

    L=279.696678+36000.768920.*T+.000303.*T.^2;

   NL=fix(L./360);

    L=(L-NL.*360).*DTR;



% compute mean anomaly of Jupiter

  JUP=225.444651+2880.0.*T+154.906654.*T;

 NJUP=fix(JUP/360);

  JUP=(JUP-NJUP.*360).*DTR;



% compute longitude of the ascending node of the moon's orbit

   NM=259.183275-1800.*T-134.142008.*T+.002078.*T.^2;

  NNM=fix(NM./360);

   NM=(NM-NNM.*360+360).*DTR;



% compute mean anomaly of Venus

    V=212.603219+58320.*T+197.803875.*T+.001286.*T.^2;

   NV=fix(V/360);

    V=(V-NV.*360.).*DTR;



% compute sun theta

 THETA=.397930.*sin(L)+.009999.*sin(G-L)+.003334.*sin(G+L)...

     -.000208.*T.*sin(L)+.000042.*sin(2.*G+L)-.000040.*cos(L)...

     -.000039.*sin(NM-L)-.000030.*T.*sin(G-L)-.000014.*sin(2.*G-L)...

     -.000010.*cos(G-L-JUP)-.000010.*T.*sin(G+L);



% compute sun rho

  RHO=1.000421-.033503.*cos(G)-.000140.*cos(2*G)...

     +.000084.*T.*cos(G)-.000033.*sin(G-JUP)+.000027.*sin(2.*G-2.*V);



% compute declination

   DECL=asin(THETA./sqrt(RHO));



% compute equation of time (in seconds of time) (L in degrees)

    L = 276.697+0.98564734.*(JED-2415020.0);

    L = (L - 360.*fix(L./360.)).*DTR;

  EQT = -97.8.*sin(L)-431.3.*cos(L)+596.6.*sin(2.*L)-1.9.*cos(2.*L)...

         +4.0.*sin(3.*L)+19.3.*cos(3.*L)-12.7.*sin(4.*L);

  EQT = EQT./60;

    L = L.*RTD;



% compute local hour angle

  GHA = 15.*(UT-12.) + 15.*EQT./60;

  LHA = GHA - LONG;



% compute radius vector

   RV=sqrt(RHO);



% compute solar altitude

   SZ=sin(DTR.*LAT).*sin(DECL)+cos(DTR.*LAT).*cos(DECL).*cos(DTR.*LHA);

    z=RTD.*asin(SZ);



% compute solar radiation outside atmosphere

[n,m]=size(z);

sorad=zeros(n,m);

ii=z>0;

sorad(ii)=(Solar_const./RV(ii).^2).*sin(DTR.*z(ii));



⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -