⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rijndael-api-fst.c

📁 关于Berkelay数据库的共享源码
💻 C
字号:
/** * rijndael-api-fst.c * * @version 2.9 (December 2000) * * Optimised ANSI C code for the Rijndael cipher (now AES) * * @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be> * @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be> * @author Paulo Barreto <paulo.barreto@terra.com.br> * * This code is hereby placed in the public domain. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Acknowledgements: * * We are deeply indebted to the following people for their bug reports, * fixes, and improvement suggestions to this implementation. Though we * tried to list all contributions, we apologise in advance for any * missing reference. * * Andrew Bales <Andrew.Bales@Honeywell.com> * Markus Friedl <markus.friedl@informatik.uni-erlangen.de> * John Skodon <skodonj@webquill.com> */#include "db_config.h"#include "db_int.h"#include "dbinc/crypto.h"#include "crypto/rijndael/rijndael-alg-fst.h"#include "crypto/rijndael/rijndael-api-fst.h"/* * __db_makeKey -- * * PUBLIC: int __db_makeKey __P((keyInstance *, int, int, char *)); */int__db_makeKey(key, direction, keyLen, keyMaterial)	keyInstance *key;	int direction;	int keyLen;	char *keyMaterial;{	u8 cipherKey[MAXKB];	if (key == NULL) {		return BAD_KEY_INSTANCE;	}	if ((direction == DIR_ENCRYPT) || (direction == DIR_DECRYPT)) {		key->direction = direction;	} else {		return BAD_KEY_DIR;	}	if ((keyLen == 128) || (keyLen == 192) || (keyLen == 256)) {		key->keyLen = keyLen;	} else {		return BAD_KEY_MAT;	}	if (keyMaterial != NULL) {		memcpy(cipherKey, keyMaterial, key->keyLen/8);	}	if (direction == DIR_ENCRYPT) {		key->Nr = __db_rijndaelKeySetupEnc(key->rk, cipherKey, keyLen);	} else {		key->Nr = __db_rijndaelKeySetupDec(key->rk, cipherKey, keyLen);	}	__db_rijndaelKeySetupEnc(key->ek, cipherKey, keyLen);	return TRUE;}/* * __db_cipherInit -- * * PUBLIC: int __db_cipherInit __P((cipherInstance *, int, char *)); */int__db_cipherInit(cipher, mode, IV)	cipherInstance *cipher;	int mode;	char *IV;{	if ((mode == MODE_ECB) || (mode == MODE_CBC) || (mode == MODE_CFB1)) {		cipher->mode = mode;	} else {		return BAD_CIPHER_MODE;	}	if (IV != NULL) {	  memcpy(cipher->IV, IV, MAX_IV_SIZE);	}	return TRUE;}/* * __db_blockEncrypt -- * * PUBLIC: int __db_blockEncrypt __P((cipherInstance *, keyInstance *, u_int8_t *, * PUBLIC:    size_t, u_int8_t *)); */int__db_blockEncrypt(cipher, key, input, inputLen, outBuffer)	cipherInstance *cipher;	keyInstance *key;	u_int8_t *input;	size_t inputLen;	u_int8_t *outBuffer;{	int i, k, t, numBlocks;	u8 block[16], *iv;	u32 tmpiv[4];	if (cipher == NULL ||		key == NULL ||		key->direction == DIR_DECRYPT) {		return BAD_CIPHER_STATE;	}	if (input == NULL || inputLen <= 0) {		return 0; /* nothing to do */	}	numBlocks = (int)(inputLen/128);	switch (cipher->mode) {	case MODE_ECB:		for (i = numBlocks; i > 0; i--) {			__db_rijndaelEncrypt(key->rk, key->Nr, input, outBuffer);			input += 16;			outBuffer += 16;		}		break;	case MODE_CBC:		iv = cipher->IV;		for (i = numBlocks; i > 0; i--) {			memcpy(tmpiv, iv, MAX_IV_SIZE);			((u32*)block)[0] = ((u32*)input)[0] ^ tmpiv[0];			((u32*)block)[1] = ((u32*)input)[1] ^ tmpiv[1];			((u32*)block)[2] = ((u32*)input)[2] ^ tmpiv[2];			((u32*)block)[3] = ((u32*)input)[3] ^ tmpiv[3];			__db_rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);			iv = outBuffer;			input += 16;			outBuffer += 16;		}		break;    case MODE_CFB1:		iv = cipher->IV;        for (i = numBlocks; i > 0; i--) {			memcpy(outBuffer, input, 16);            for (k = 0; k < 128; k++) {				__db_rijndaelEncrypt(key->ek, key->Nr, iv, block);                outBuffer[k >> 3] ^= (block[0] & (u_int)0x80) >> (k & 7);                for (t = 0; t < 15; t++) {                	iv[t] = (iv[t] << 1) | (iv[t + 1] >> 7);                }               	iv[15] = (iv[15] << 1) | ((outBuffer[k >> 3] >> (7 - (k & 7))) & 1);            }            outBuffer += 16;            input += 16;        }        break;	default:		return BAD_CIPHER_STATE;	}	return 128*numBlocks;}/** * Encrypt data partitioned in octets, using RFC 2040-like padding. * * @param   input           data to be encrypted (octet sequence) * @param   inputOctets		input length in octets (not bits) * @param   outBuffer       encrypted output data * * @return	length in octets (not bits) of the encrypted output buffer. *//* * __db_padEncrypt -- * * PUBLIC: int __db_padEncrypt __P((cipherInstance *, keyInstance *, u_int8_t *, * PUBLIC:    int, u_int8_t *)); */int__db_padEncrypt(cipher, key, input, inputOctets, outBuffer)	cipherInstance *cipher;	keyInstance *key;	u_int8_t *input;	int inputOctets;	u_int8_t *outBuffer;{	int i, numBlocks, padLen;	u8 block[16], *iv;	u32 tmpiv[4];	if (cipher == NULL ||		key == NULL ||		key->direction == DIR_DECRYPT) {		return BAD_CIPHER_STATE;	}	if (input == NULL || inputOctets <= 0) {		return 0; /* nothing to do */	}	numBlocks = inputOctets/16;	switch (cipher->mode) {	case MODE_ECB:		for (i = numBlocks; i > 0; i--) {			__db_rijndaelEncrypt(key->rk, key->Nr, input, outBuffer);			input += 16;			outBuffer += 16;		}		padLen = 16 - (inputOctets - 16*numBlocks);		DB_ASSERT(NULL, padLen > 0 && padLen <= 16);		memcpy(block, input, 16 - padLen);		memset(block + 16 - padLen, padLen, padLen);		__db_rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);		break;	case MODE_CBC:		iv = cipher->IV;		for (i = numBlocks; i > 0; i--) {			memcpy(tmpiv, iv, MAX_IV_SIZE);			((u32*)block)[0] = ((u32*)input)[0] ^ tmpiv[0];			((u32*)block)[1] = ((u32*)input)[1] ^ tmpiv[1];			((u32*)block)[2] = ((u32*)input)[2] ^ tmpiv[2];			((u32*)block)[3] = ((u32*)input)[3] ^ tmpiv[3];			__db_rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);			iv = outBuffer;			input += 16;			outBuffer += 16;		}		padLen = 16 - (inputOctets - 16*numBlocks);		DB_ASSERT(NULL, padLen > 0 && padLen <= 16);		for (i = 0; i < 16 - padLen; i++) {			block[i] = input[i] ^ iv[i];		}		for (i = 16 - padLen; i < 16; i++) {			block[i] = (u_int8_t)padLen ^ iv[i];		}		__db_rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);		break;	default:		return BAD_CIPHER_STATE;	}	return 16*(numBlocks + 1);}/* * __db_blockDecrypt -- * * PUBLIC: int __db_blockDecrypt __P((cipherInstance *, keyInstance *, u_int8_t *, * PUBLIC:    size_t, u_int8_t *)); */int__db_blockDecrypt(cipher, key, input, inputLen, outBuffer)	cipherInstance *cipher;	keyInstance *key;	u_int8_t *input;	size_t inputLen;	u_int8_t *outBuffer;{	int i, k, t, numBlocks;	u8 block[16], *iv;	u32 tmpiv[4];	if (cipher == NULL ||		key == NULL ||		(cipher->mode != MODE_CFB1 && key->direction == DIR_ENCRYPT)) {		return BAD_CIPHER_STATE;	}	if (input == NULL || inputLen <= 0) {		return 0; /* nothing to do */	}	numBlocks = (int)(inputLen/128);	switch (cipher->mode) {	case MODE_ECB:		for (i = numBlocks; i > 0; i--) {			__db_rijndaelDecrypt(key->rk, key->Nr, input, outBuffer);			input += 16;			outBuffer += 16;		}		break;	case MODE_CBC:		memcpy(tmpiv, cipher->IV, MAX_IV_SIZE);		for (i = numBlocks; i > 0; i--) {			__db_rijndaelDecrypt(key->rk, key->Nr, input, block);			((u32*)block)[0] ^= tmpiv[0];			((u32*)block)[1] ^= tmpiv[1];			((u32*)block)[2] ^= tmpiv[2];			((u32*)block)[3] ^= tmpiv[3];			memcpy(tmpiv, input, 16);			memcpy(outBuffer, block, 16);			input += 16;			outBuffer += 16;		}		break;    case MODE_CFB1:		iv = cipher->IV;        for (i = numBlocks; i > 0; i--) {			memcpy(outBuffer, input, 16);            for (k = 0; k < 128; k++) {				__db_rijndaelEncrypt(key->ek, key->Nr, iv, block);                for (t = 0; t < 15; t++) {                	iv[t] = (iv[t] << 1) | (iv[t + 1] >> 7);                }               	iv[15] = (iv[15] << 1) | ((input[k >> 3] >> (7 - (k & 7))) & 1);                outBuffer[k >> 3] ^= (block[0] & (u_int)0x80) >> (k & 7);            }            outBuffer += 16;            input += 16;        }        break;	default:		return BAD_CIPHER_STATE;	}	return 128*numBlocks;}/* * __db_padDecrypt -- * * PUBLIC: int __db_padDecrypt __P((cipherInstance *, keyInstance *, u_int8_t *, * PUBLIC:    int, u_int8_t *)); */int__db_padDecrypt(cipher, key, input, inputOctets, outBuffer)	cipherInstance *cipher;	keyInstance *key;	u_int8_t *input;	int inputOctets;	u_int8_t *outBuffer;{	int i, numBlocks, padLen;	u8 block[16];	u32 tmpiv[4];	if (cipher == NULL ||		key == NULL ||		key->direction == DIR_ENCRYPT) {		return BAD_CIPHER_STATE;	}	if (input == NULL || inputOctets <= 0) {		return 0; /* nothing to do */	}	if (inputOctets % 16 != 0) {		return BAD_DATA;	}	numBlocks = inputOctets/16;	switch (cipher->mode) {	case MODE_ECB:		/* all blocks but last */		for (i = numBlocks - 1; i > 0; i--) {			__db_rijndaelDecrypt(key->rk, key->Nr, input, outBuffer);			input += 16;			outBuffer += 16;		}		/* last block */		__db_rijndaelDecrypt(key->rk, key->Nr, input, block);		padLen = block[15];		if (padLen >= 16) {			return BAD_DATA;		}		for (i = 16 - padLen; i < 16; i++) {			if (block[i] != padLen) {				return BAD_DATA;			}		}		memcpy(outBuffer, block, 16 - padLen);		break;	case MODE_CBC:		/* all blocks but last */		memcpy(tmpiv, cipher->IV, MAX_IV_SIZE);		for (i = numBlocks - 1; i > 0; i--) {			__db_rijndaelDecrypt(key->rk, key->Nr, input, block);			((u32*)block)[0] ^= tmpiv[0];			((u32*)block)[1] ^= tmpiv[1];			((u32*)block)[2] ^= tmpiv[2];			((u32*)block)[3] ^= tmpiv[3];			memcpy(tmpiv, input, 16);			memcpy(outBuffer, block, 16);			input += 16;			outBuffer += 16;		}		/* last block */		__db_rijndaelDecrypt(key->rk, key->Nr, input, block);		((u32*)block)[0] ^= tmpiv[0];		((u32*)block)[1] ^= tmpiv[1];		((u32*)block)[2] ^= tmpiv[2];		((u32*)block)[3] ^= tmpiv[3];		padLen = block[15];		if (padLen <= 0 || padLen > 16) {			return BAD_DATA;		}		for (i = 16 - padLen; i < 16; i++) {			if (block[i] != padLen) {				return BAD_DATA;			}		}		memcpy(outBuffer, block, 16 - padLen);		break;	default:		return BAD_CIPHER_STATE;	}	return 16*numBlocks - padLen;}#ifdef INTERMEDIATE_VALUE_KAT/** *	cipherUpdateRounds: * *	Encrypts/Decrypts exactly one full block a specified number of rounds. *	Only used in the Intermediate Value Known Answer Test. * *	Returns: *		TRUE - on success *		BAD_CIPHER_STATE - cipher in bad state (e.g., not initialized) *//* * __db_cipherUpdateRounds -- * * PUBLIC: int __db_cipherUpdateRounds __P((cipherInstance *, keyInstance *, * PUBLIC:    u_int8_t *, int, u_int8_t *, int)); */int__db_cipherUpdateRounds(cipher, key, input, inputLen, outBuffer, rounds)	cipherInstance *cipher;	keyInstance *key;	u_int8_t *input;	size_t inputLen;	u_int8_t *outBuffer;	int rounds;{	u8 block[16];	if (cipher == NULL || key == NULL) {		return BAD_CIPHER_STATE;	}	memcpy(block, input, 16);	switch (key->direction) {	case DIR_ENCRYPT:		__db_rijndaelEncryptRound(key->rk, key->Nr, block, rounds);		break;	case DIR_DECRYPT:		__db_rijndaelDecryptRound(key->rk, key->Nr, block, rounds);		break;	default:		return BAD_KEY_DIR;	}	memcpy(outBuffer, block, 16);	return TRUE;}#endif /* INTERMEDIATE_VALUE_KAT */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -