⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 _evec3v4.pas

📁 微分进化法的pascal程序
💻 PAS
字号:
program devec3;

{* About devec3                                                   *}
{* Differential Evolution for MATLAB                              *}
{* Copyright (C) 1996, 1997 R. Storn                              *}
{* International Computer Science Institute (ICSI)                *}
{* 1947 Center Street, Suite 600                                  *}
{* Berkeley, CA 94704                                             *}
{* E-mail: storn@icsi.berkeley.edu                                *}
{* WWW:    http://www.icsi.berkeley.edu/~storn/                   *}
{* Translated into Pascal by Hubert Geldon hgeldon@wp.pl          *}
{*                           and                                  *}
{*                           Piotr A. Gauden gaudi@cc.uni.toun.pl *}
{*                           N. Copernicus Univ.                  *}
{*                           Department of Chemistry              *}
{*                           87-100 Torun                         *}

{$IFDEF CPU87}
{$N+}
uses crt , printer, graph;
     type real = extended;

{$ELSE}
uses crt , printer;
{$ENDIF}


{ Include definitions and declarations }
{$I d:\dysk_13\decl.de }

{ Include procedures and functions for generating random }
{$I d:\dysk_13\genps.de }

{ Include procedures and functions for calculating DC }
{$I d:\dysk_13\deter.de }


{ Include procedures and functions for printing in output and data files }
{$I d:\dysk_13\out_proc.de }


{############################################################################}
BEGIN           {* main program *}

clrscr;
assign(xs,'d:\dysk_13\x.txt');
assign(ys,'d:\dysk_13\y.txt');

repeat
   begin
      writeln('Enter seed random number (0.000 ... 1.000).');
      readln(randomseed);
   end;
until (randomseed>0) and (randomseed<1.0);
warmup_random(randomseed);

{* pop is a matrix of size NPxD. It will be initialized with random values *}
{* between the min and max values of the parameters *}
for i := 1 to NP do
    for j := 1 to D do
        begin
          randtest:=rand;
          pop[i,j] := XVmin[j] + (randtest * (XVmax[j] - XVmin[j]));
        end;

{* Evaluate the best member after initialization *}
reset(xs);
reset(ys);
readln(xs,FDX);
readln(ys,FDY);
if FDX <> FDY then
   begin
      writeln('Number of data points in data files is different. Correct it.');
      halt;
   end;
if FDX <> XY then
   begin
      writeln('Number of data points in data files is different then XY value');
      writeln('in "const" part of program. Correct it.');
      halt;
   end;
for datnum := 1 to XY do
   begin
      readln(xs,xdata[datnum]);
      readln(ys,ydata[datnum]);
   end;
close(xs);
close(ys);

cur_gen := 1;
n_pop := 1;                        {* check the first member *}
DC:=Determination(n_pop,pop);
memberval[1] := odch_st;
bestval := memberval[1];
tempmemberval:=memberval[1];
ClrScr;
Print_Out;
Print_File;
for i := 1 to D do
    bestmemiter[1,i] := pop[1,i];  {* check the first member *}
for j := 2 to NP do		   {* check the rest of members *}
    begin
       tempmemberval:=memberval[j];
       Print_Out;
       n_pop := j;
       DC:=Determination(n_pop,pop);
       memberval[j] := odch_st;
       if memberval[j] < bestval  then
          begin
            bestval := memberval[j];
            for k := 1 to D do
                bestmemiter[1,k] := pop[j,k];
          Print_File;
          end;
    end;

for k := 1 to D do
    bestmem[1,k] := bestmemiter[1,k];  {* best member ever, after first generation *}
    bestvalev := bestval;          {* check the rest of members *}


cur_gen := 2;
while cur_gen <= itermax do
   begin
      for i := 1 to NP do
          for j := 1 to D do
              popold[i,j] := pop[i,j];      {* save the old population *}

{%%%%%% ind}
      for i := 1 to 4 do
          begin
             randmatrix[i] := rand;
             randmatrixint[i] := i;
          end;
      for j := 1 to 4 do
          begin
             valmin := 1.0;
             for i := 1 to 4 do
	         begin
                    if randmatrix[i] < valmin
                    then
                      begin
                         valmin := randmatrix[i];
                         ind[j] := randmatrixint[i] {* shuffle locations of vectors *}
                      end;
                 end;
             for k := 1 to 4 do
                 begin
                    if randmatrix[k] = valmin
                    then randmatrix[k] := 1;
                 end;
          end;
{%%%%%% ind}

{%%%%%% rot}
          for i := 1 to NP do
              rot[i] := i-1;
{%%%%%% rot}

{%%%%%% a1}
      for i := 1 to NP do
          begin
             randmatrixnp[i] := rand;
             randmatrixnpint[i] := i;
          end;
      for j := 1 to NP do
          begin
             valmin := 1.0;
             for i := 1 to NP do
	         begin
                    if randmatrixnp[i] < valmin
                    then
                      begin
                         valmin := randmatrixnp[i];
                         a1[j] := randmatrixnpint[i]; {* shuffle locations of vectors *}
                      end;
                 end;
             for k := 1 to NP do
                 begin
                    if randmatrixnp[k] = valmin
                    then randmatrixnp[k] := 1;
                 end;
          end;
{%%%%%% a1}

{%%%%%% a2}
          for i := 1 to NP do
              begin
                 transmata[i] := rot[i] + ind[1];
                 tempmata[i]  := transmata[i]/NP;
                 rt[i]  := trunc(tempmata[i]);
                 rt[i]  := transmata[i] - NP * rt[i]; {* rotate indices by ind[1] position *}
              end;

        for i := 1 to NP do
              begin
                 k := rt[i] + 1;
                 a2[i] := a1[k];    {* rotate vector locations *}
              end;
{%%%%%% a2}

{%%%%%% a3}
          for i := 1 to NP do
              begin
                 transmata[i] := rot[i] + ind[2];
                 tempmata[i]  := transmata[i]/NP;
                 rt[i]  := trunc(tempmata[i]);
                 rt[i]  := transmata[i] - NP * rt[i]; {* rotate indices by ind[1] position *}
              end;
          for i := 1 to NP do
              begin
                 k := rt[i] + 1;
                 a3[i] := a2[k];
              end;
{%%%%%% a3}

{%%%%%% a4}
          for i := 1 to NP do
              begin
                 transmata[i] := rot[i] + ind[3];
                 tempmata[i]  := transmata[i]/NP;
                 rt[i]  := trunc(tempmata[i]);
                 rt[i]  := transmata[i] - NP * rt[i]; {* rotate indices by ind[1] position *}
              end;
          for i := 1 to NP do
              begin
                 k := rt[i] + 1;
                 a4[i] := a3[k];
              end;
{%%%%%% a4}

{%%%%%% a5}
          for i := 1 to NP do
              begin
                 transmata[i] := rot[i] + ind[4];
                 tempmata[i]  := transmata[i]/NP;
                 rt[i]  := trunc(tempmata[i]);
                 rt[i]  := transmata[i] - NP * rt[i]; {* rotate indices by ind[1] position *}
              end;
          for i := 1 to NP do
              begin
                 k := rt[i] + 1;
                 a5[i] := a4[k];
              end;
{%%%%%% a5}

{%%%%%% pm1}
          for i := 1 to NP do
              begin
                 k := a1[i];
                 for j := 1 to D do
                     pm1[i,j] := popold[k,j]; {* shuffled population 1 *}
              end;
{%%%%%% pm1}

{%%%%%% pm2}
          for i := 1 to NP do
              begin
                 k := a2[i];
                 for j := 1 to D do
                     pm2[i,j] := popold[k,j]; {* shuffled population 2 *}
              end;
{%%%%%% pm2}

{%%%%%% pm3}
          for i := 1 to NP do
              begin
                 k := a3[i];
                 for j := 1 to D do
                     pm3[i,j] := popold[k,j]; {* shuffled population 3 *}
              end;
{%%%%%% pm3}

{%%%%%% pm4}
          for i := 1 to NP do
              begin
                 k := a4[i];
                 for j := 1 to D do
                     pm4[i,j] := popold[k,j]; {* shuffled population 4 *}
              end;
{%%%%%% pm4}

{%%%%%% pm5}
          for i := 1 to NP do
              begin
                 k := a5[i];
                 for j := 1 to D do
                     pm5[i,j] := popold[k,j]; {* shuffled population 5 *}
              end;
{%%%%%% pm5}

{%%%%%% bm}
          for i := 1 to NP do
              for j := 1 to D do
                  bm[i,j] := bestmemiter[1,j]; {* population filled with *}
{%%%%%% bm}	                               {* the best member of the last iteration *}

{%%%%%% mui<CR}
          for i := 1 to NP do
              for j := 1 to D do
                  begin
                     teval := rand;
                     if teval < CR   {* all random numbers < CR are 1, 0 otherwise *}
                     then mui[i,j] := 1
                     else mui[i,j] := 0;
                  end;
{%%%%%% mui<CR}


{%%%%%% strategy<5}
      if  strategy > 5
        then st := strategy - 5
      else
        begin
            st := strategy;
            for i:= 1 to NP do    {* transpose, collect 1's in each column *}
                for j := 1 to D do
                    muitrans[j,i] := mui[i,j];

          for j := 1 to NP do
              begin
               ip:=0;
               ik:=D+1;
               for i := 1 to D do
                 begin
                   if muitrans[i,j]=0 then
                     begin
                       ip:=ip+1;
                       muitratm[ip,j]:=0;      {* shuffle locations of vectors *}
                     end
                   else
                     begin
                       ik:=ik-1;
                       muitratm[ik,j]:=1;
                     end;
                 end;
               end;

          for j := 1 to NP do
               for i := 1 to D do
                  muitrans[i,j]:=muitratm[i,j];

          for i := 1 to D do
              rotd[i] := i-1;

          for j := 1 to NP do
              begin
                 teval := rand * D;
	         n := trunc(teval);
	         if n > 0 then
                   begin
                     for i:=1 to D do
                       begin
                         transmata[i] := rotd[i] + n;
                         tempmata[i]  := transmata[i]/D;
                         rtd[i]  := trunc(tempmata[i]);
                         rtd[i]  := transmata[i] - D * rtd[i]; {* rotate column i by n *}
                       end;
                     for i :=1 to D do
                       begin
                         k := rtd[i] + 1;
                         muitratm[i,j] := muitrans[k,j];
                       end;
                   end;
              end;

          for i:= 1 to D do    {* transpose back *}
             for j := 1 to NP do
                mui[j,i] := muitratm[i,j];
        end;
{%%%%%% strategy<5}

{%%%%%% mpo}
          for i :=1 to NP do
              for j := 1 to D do
                  if mui[i,j] = 1
                  then mpo[i,j] := 0
                  else mpo[i,j] := 1;	{* inverse mask to mui *}
{%%%%%% mpo}

{%%%%%% st=1}
          if st = 1             {* DE/best/1 *}
          then
             for i := 1 to NP do
                 for j := 1 to D do
	             ui[i,j] := (popold[i,j] * mpo[i,j]) + ((bm[i,j] + F * (pm1[i,j] - pm2[i,j])) * mui[i,j])
          else
{%%%%%% st=2}
            if st = 2           {* DE/rand/1 *}
            then
               for i := 1 to NP do
                   for j :=1 to D do
                       ui[i,j] := (popold[i,j] * mpo[i,j]) + ((pm3[i,j] + F * (pm1[i,j] - pm2[i,j])) * mui[i,j])
            else
{%%%%%% st=3}
              if st = 3         {* DE/rand-to-best/1 *}
              then
                 for i := 1 to NP do
                     for j :=1 to D do
                       begin
                         ui[i,j] := popold[i,j] + F * (bm[i,j] - popold[i,j]) + F * (pm1[i,j] - pm2[i,j]);
                         ui[i,j] := (popold[i,j] * mpo[i,j]) + (ui[i,j] * mui[i,j]);
                       end
              else
{%%%%%% st=4}
                if st = 4       {* DE/best/2 *}
                then
	           for i := 1 to NP do
                       for j :=1 to D do
                           ui[i,j] := (popold[i,j] * mpo[i,j]) + ((bm[i,j] +
                           F * (pm1[i,j] - pm2[i,j] + pm3[i,j] - pm4[i,j])) * mui[i,j])
                else
{%%%%%% st=5}
                  if st = 5     {* DE/rand/2 *}
                  then
	             for i := 1 to NP do
                         for j :=1 to D do
                      	     ui[i,j] := (popold[i,j] * mpo[i,j]) + ((pm5[i,j] +
                             F * (pm1[i,j] - pm2[i,j] + pm3[i,j] - pm4[i,j])) * mui[i,j]);
{%%%%%% end st}



{%%%%%% start of main loop}
  for i:=1 to NP do
  begin
    for j:=1 to D do   {check range}
      if (ui[i,j]<XVmin[j]) then
         begin
           randtest:=rand;
           ui[i,j]:=XVmin[j] + randtest*(XVmax[j] - XVmin[j])
         end
      else if (ui[i,j]>XVmax[j]) then
         begin
           randtest:=rand;
           ui[i,j]:=XVmin[j] + randtest*(XVmax[j] - XVmin[j]);
         end;


    n_pop:=i;
    DC:=Determination(n_pop,ui);
    tempmemberval := odch_st;
    i:=n_pop;
    if (tempmemberval <= memberval[i]) then { if competitor is better than value in "cost array"}
       begin
         for j:=1 to D do
           begin
             pop[i,j] := ui[i,j];              { replace old vector with new one (for new iteration}
           end;
         memberval[i] := tempmemberval;     { save value in "cost array"}
       end;
       {----we update bestval only in case of success to save time-----------}
    if (tempmemberval < bestval) then       { if competitor better than the best one ever}
       begin
         bestval := tempmemberval;          { new best value}
         for j:=1 to D do
           begin
             bestmemiter[1,j] := ui[i,j];      { replace old vector with new one (for new iteration}
           end;
         Print_File;
         Print_Out;
       end;

  { freeze the best member of this iteration for the coming}
  { iteration. This is needed for some of the strategies.}
  end;
{%%%%%% end of main loop}

{*-----Select which vectors are allowed to enter the new population-----*}
  for j := 1 to D do
    begin
      bestmem[1,j] := bestmemiter[1,j];
      bestvalev := bestval;
    end;


      if bestvalev < VTR
      then goto theend;

      cur_gen := cur_gen + 1;


   end;

theend: writeln;
writeln('Calculations are done. "Value To Reach" has been reached.');
writeln('Results are in c:/result.txt file.');
writeln('Press any key...');
repeat until keypressed;

END.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -