📄 rdo.c
字号:
if( f <= abs_coefs[i] * quant_mf[zigzag[i]] ) i_last_nnz = i; } if( i_last_nnz == -1 ) { memset( dct, 0, i_coefs * sizeof(*dct) ); return; } /* init trellis */ for( i = 1; i < 8; i++ ) nodes_cur[i].score = TRELLIS_SCORE_MAX; nodes_cur[0].score = 0; nodes_cur[0].level_idx = 0; level_tree[0].abs_level = 0; level_tree[0].next = 0; // coefs are processed in reverse order, because that's how the abs value is coded. // last_coef and significant_coef flags are normally coded in forward order, but // we have to reverse them to match the levels. // in 4x4 blocks, last_coef and significant_coef use a separate context for each // position, so the order doesn't matter, and we don't even have to update their contexts. // in 8x8 blocks, some positions share contexts, so we'll just have to hope that // cabac isn't too sensitive. if( i_coefs == 64 ) { const uint8_t *ctx_sig = &h->cabac.state[ significant_coeff_flag_offset[i_ctxBlockCat] ]; const uint8_t *ctx_last = &h->cabac.state[ last_coeff_flag_offset[i_ctxBlockCat] ]; for( i = 0; i < 63; i++ ) { cabac_state_sig[i] = ctx_sig[ significant_coeff_flag_offset_8x8[i] ]; cabac_state_last[i] = ctx_last[ last_coeff_flag_offset_8x8[i] ]; } } else { memcpy( cabac_state_sig, &h->cabac.state[ significant_coeff_flag_offset[i_ctxBlockCat] ], 15 ); memcpy( cabac_state_last, &h->cabac.state[ last_coeff_flag_offset[i_ctxBlockCat] ], 15 ); } memcpy( nodes_cur[0].cabac_state, &h->cabac.state[ coeff_abs_level_m1_offset[i_ctxBlockCat] ], 10 ); for( i = i_last_nnz; i >= b_ac; i-- ) { int i_coef = abs_coefs[i]; int q = ( f + i_coef * quant_mf[zigzag[i]] ) >> i_qbits; int abs_level; int cost_sig[2], cost_last[2]; trellis_node_t n; // skip 0s: this doesn't affect the output, but saves some unnecessary computation. if( q == 0 ) { // no need to calculate ssd of 0s: it's the same in all nodes. // no need to modify level_tree for ctx=0: it starts with an infinite loop of 0s. const int cost_sig0 = x264_cabac_size_decision_noup( &cabac_state_sig[i], 0 ) * i_lambda2 >> ( CABAC_SIZE_BITS - LAMBDA_BITS ); for( j = 1; j < 8; j++ ) { if( nodes_cur[j].score != TRELLIS_SCORE_MAX ) {#define SET_LEVEL(n,l) \ level_tree[i_levels_used].abs_level = l; \ level_tree[i_levels_used].next = n.level_idx; \ n.level_idx = i_levels_used; \ i_levels_used++; SET_LEVEL( nodes_cur[j], 0 ); nodes_cur[j].score += cost_sig0; } } continue; } XCHG( trellis_node_t*, nodes_cur, nodes_prev ); for( j = 0; j < 8; j++ ) nodes_cur[j].score = TRELLIS_SCORE_MAX; if( i < i_coefs-1 ) { cost_sig[0] = x264_cabac_size_decision_noup( &cabac_state_sig[i], 0 ); cost_sig[1] = x264_cabac_size_decision_noup( &cabac_state_sig[i], 1 ); cost_last[0] = x264_cabac_size_decision_noup( &cabac_state_last[i], 0 ); cost_last[1] = x264_cabac_size_decision_noup( &cabac_state_last[i], 1 ); } else { cost_sig[0] = cost_sig[1] = 0; cost_last[0] = cost_last[1] = 0; } // there are a few cases where increasing the coeff magnitude helps, // but it's only around .003 dB, and skipping them ~doubles the speed of trellis. // could also try q-2: that sometimes helps, but also sometimes decimates blocks // that are better left coded, especially at QP > 40. for( abs_level = q; abs_level >= q-1; abs_level-- ) { int d = i_coef - ((unquant_mf[zigzag[i]] * abs_level + 128) >> 8); uint64_t ssd = (int64_t)d*d * coef_weight[i]; for( j = 0; j < 8; j++ ) { int node_ctx = j; if( nodes_prev[j].score == TRELLIS_SCORE_MAX ) continue; n = nodes_prev[j]; /* code the proposed level, and count how much entropy it would take */ if( abs_level || node_ctx ) { unsigned f8_bits = cost_sig[ abs_level != 0 ]; if( abs_level ) { const int i_prefix = X264_MIN( abs_level - 1, 14 ); f8_bits += cost_last[ node_ctx == 0 ]; f8_bits += x264_cabac_size_decision2( &n.cabac_state[coeff_abs_level1_ctx[node_ctx]], i_prefix > 0 ); if( i_prefix > 0 ) { uint8_t *ctx = &n.cabac_state[coeff_abs_levelgt1_ctx[node_ctx]]; f8_bits += cabac_prefix_size[i_prefix][*ctx]; *ctx = cabac_prefix_transition[i_prefix][*ctx]; if( abs_level >= 15 ) f8_bits += bs_size_ue( abs_level - 15 ) << CABAC_SIZE_BITS; node_ctx = coeff_abs_level_transition[1][node_ctx]; } else { f8_bits += 1 << CABAC_SIZE_BITS; node_ctx = coeff_abs_level_transition[0][node_ctx]; } } n.score += (uint64_t)f8_bits * i_lambda2 >> ( CABAC_SIZE_BITS - LAMBDA_BITS ); } n.score += ssd; /* save the node if it's better than any existing node with the same cabac ctx */ if( n.score < nodes_cur[node_ctx].score ) { SET_LEVEL( n, abs_level ); nodes_cur[node_ctx] = n; } } } } /* output levels from the best path through the trellis */ bnode = &nodes_cur[0]; for( j = 1; j < 8; j++ ) if( nodes_cur[j].score < bnode->score ) bnode = &nodes_cur[j]; j = bnode->level_idx; for( i = b_ac; i < i_coefs; i++ ) { dct[zigzag[i]] = level_tree[j].abs_level * signs[i]; j = level_tree[j].next; }}void x264_quant_4x4_trellis( x264_t *h, int16_t dct[4][4], int i_quant_cat, int i_qp, int i_ctxBlockCat, int b_intra ){ const int i_qbits = i_qp / 6; const int i_mf = i_qp % 6; const int b_ac = (i_ctxBlockCat == DCT_LUMA_AC); /* should the lambdas be different? I'm just matching the behaviour of deadzone quant. */ const int i_lambda_mult = b_intra ? 65 : 85; const int i_lambda2 = ((lambda2_tab[i_mf] * i_lambda_mult*i_lambda_mult / 10000) << (2*i_qbits)) >> LAMBDA_BITS; quant_trellis_cabac( h, (int16_t*)dct, (int*)h->quant4_mf[i_quant_cat][i_mf], h->unquant4_mf[i_quant_cat][i_qp], x264_dct4_weight2_zigzag, x264_zigzag_scan4, i_ctxBlockCat, 15+i_qbits, i_lambda2, b_ac, 16 );}void x264_quant_8x8_trellis( x264_t *h, int16_t dct[8][8], int i_quant_cat, int i_qp, int b_intra ){ const int i_qbits = i_qp / 6; const int i_mf = i_qp % 6; const int i_lambda_mult = b_intra ? 65 : 85; const int i_lambda2 = ((lambda2_tab[i_mf] * i_lambda_mult*i_lambda_mult / 10000) << (2*i_qbits)) >> LAMBDA_BITS; quant_trellis_cabac( h, (int16_t*)dct, (int*)h->quant8_mf[i_quant_cat][i_mf], h->unquant8_mf[i_quant_cat][i_qp], x264_dct8_weight2_zigzag, x264_zigzag_scan8, DCT_LUMA_8x8, 16+i_qbits, i_lambda2, 0, 64 );}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -