📄 huffman.c
字号:
/***********This software module was originally developed by DolbyLaboratories and edited by Sony Corporationin the course of development of the MPEG-2 NBC/MPEG-4Audio standard ISO/IEC13818-7, 14496-1, 2 and 3. This software module is animplementation of a part of one or more MPEG-2 NBC/MPEG-4 Audio tools asspecified by the MPEG-2 NBC/MPEG-4 Audio standard. ISO/IEC gives users of theMPEG-2NBC/MPEG-4 Audio standards free license to this software moduleor modifications thereof for use in hardware or software productsclaiming conformance to the MPEG-2 NBC/MPEG-4 Audio standards. Thoseintending to use this software module in hardware or software productsare advised that this use may infringe existing patents. The originaldeveloper of this software module, the subsequenteditors and their companies, and ISO/IEC have no liability for use ofthis software module or modifications thereof in animplementation. Copyright is not released for non MPEG-2 NBC/MPEG-4Audio conforming products. The original developer retains full right touse the code for the developer's own purpose, assign or donate the code to athird party and to inhibit third party from using the code for nonMPEG-2 NBC/MPEG-4 Audio conforming products. This copyright noticemust be included in all copies or derivative works. Copyright 1996.***********//* * $Id: huffman.c,v 1.1 2006/02/23 14:30:26 kevin-fu Exp $ */#include <math.h>#include <stdlib.h>#include "huffman.h"#include "coder.h"#include "bitstream.h"#include "util.h"#include "hufftab.h"void HuffmanInit(CoderInfo *coderInfo, unsigned int numChannels){ unsigned int channel; for (channel = 0; channel < numChannels; channel++) { coderInfo[channel].data = (int*)AllocMemory(5*FRAME_LEN*sizeof(int)); coderInfo[channel].len = (int*)AllocMemory(5*FRAME_LEN*sizeof(int));#ifdef DRM coderInfo[channel].num_data_cw = (int*)AllocMemory(FRAME_LEN*sizeof(int));#endif }}void HuffmanEnd(CoderInfo *coderInfo, unsigned int numChannels){ unsigned int channel; for (channel = 0; channel < numChannels; channel++) { if (coderInfo[channel].data) FreeMemory(coderInfo[channel].data); if (coderInfo[channel].len) FreeMemory(coderInfo[channel].len); }}int BitSearch(CoderInfo *coderInfo, int *quant) /* Quantized spectral values */ /* This function inputs a vector of quantized spectral data, quant[][], and returns a vector, 'book_vector[]' that describes how to group together the scalefactor bands into a smaller number of sections. There are MAX_SCFAC_BANDS elements in book_vector (equal to 49 in the case of long blocks and 112 for short blocks), and each element has a huffman codebook number assigned to it. For a quick and simple algorithm, this function performs a binary search across the sfb's (scale factor bands). On the first approach, it calculates the needed amount of bits if every sfb were its own section and transmitted its own huffman codebook value side information (equal to 9 bits for a long block, 7 for a short). The next iteration combines adjacent sfb's, and calculates the bit rate for length two sfb sections. If any wider two-sfb section requires fewer bits than the sum of the two single-sfb sections (below it in the binary tree), then the wider section will be chosen. This process occurs until the sections are split into three uniform parts, each with an equal amount of sfb's contained. The binary tree is stored as a two-dimensional array. Since this tree is not full, (there are only 49 nodes, not 2^6 = 64), the numbering is a little complicated. If the tree were full, the top node would be 1. It's children would be 2 and 3. But, since this tree is not full, the top row of three nodes are numbered {4,5,6}. The row below it is {8,9,10,11,12,13}, and so on. The binary tree is called bit_stats[112][3]. There are 112 total nodes (some are not used since it's not full). bit_stats[x][0] holds the bit totals needed for the sfb sectioning strategy represented by the node x in the tree. bit_stats[x][1] holds the optimal huffman codebook table that minimizes the bit rate, given the sectioning boundaries dictated by node x.*/{ int i,j,k; int hop; int min_book_choice[112][3]; int bit_stats[240][3]; int total_bit_count; int levels; int pow2levels; int fracpow2lev; /* Set local pointer to coderInfo book_vector */ int* book_vector = coderInfo -> book_vector; levels = (int) ((log((double)coderInfo->nr_of_sfb)/log((double)2.0))+1);/* #define SLOW */#ifdef SLOW for(i = 0; i < 5; i++) {#else i = 0;#endif hop = 1 << i; NoiselessBitCount(coderInfo, quant, hop, min_book_choice); /* load up the (not-full) binary search tree with the min_book_choice values */ k=0; total_bit_count = 0; pow2levels = 1 << (levels - i); fracpow2lev = pow2levels + (coderInfo->nr_of_sfb >> i); for (j=pow2levels; j < fracpow2lev; j++) { bit_stats[j][0] = min_book_choice[k][0]; /* the minimum bit cost for this section */ bit_stats[j][1] = min_book_choice[k][1]; /* used with this huffman book number */#ifdef SLOW if (i>0){ /* not on the lowest level, grouping more than one signle scalefactor band per section*/ if (bit_stats[j][0] < bit_stats[2*j][0] + bit_stats[2*j+1][0]){ /* it is cheaper to combine surrounding sfb secionts into one larger huffman book section */ for(n=k;n<k+hop;n++) { /* write the optimal huffman book value for the new larger section */ if ( (book_vector[n]!=INTENSITY_HCB)&&(book_vector[n]!=INTENSITY_HCB2) ) { /* Don't merge with IS bands */ book_vector[n] = bit_stats[j][1]; } } } else { /* it was cheaper to transmit the smaller huffman table sections */ bit_stats[j][0] = bit_stats[2*j][0] + bit_stats[2*j+1][0]; } } else#endif { /* during the first stage of the iteration, all sfb's are individual sections */ if ( (book_vector[k]!=INTENSITY_HCB)&&(book_vector[k]!=INTENSITY_HCB2) ) { book_vector[k] = bit_stats[j][1]; /* initially, set all sfb's to their own optimal section table values */ } } total_bit_count = total_bit_count + bit_stats[j][0]; k=k+hop; }#ifdef SLOW }#endif /* book_vector[k] = book_vector[k-1]; */ return(total_bit_count);}int NoiselessBitCount(CoderInfo *coderInfo, int *quant, int hop, int min_book_choice[112][3]){ int i,j,k; /* This function inputs: - the quantized spectral data, 'quant[]'; - all of the huffman codebooks, 'huff[][]'; - the size of the sections, in scalefactor bands (SFB's), 'hop'; - an empty matrix, min_book_choice[][] passed to it; This function outputs: - the matrix, min_book_choice. It is a two dimensional matrix, with its rows corresponding to spectral sections. The 0th column corresponds to the bits needed to code a section with 'hop' scalefactors bands wide, all using the same huffman codebook. The 1st column contains the huffman codebook number that allows the minimum number of bits to be used. Other notes: - Initally, the dynamic range is calculated for each spectral section. The section can only be entropy coded with books that have an equal or greater dynamic range than the section's spectral data. The exception to this is for the 11th ESC codebook. If the dynamic range is larger than 16, then an escape code is appended after the table 11 codeword which encodes the larger value explicity in a pseudo-non-uniform quantization method. */ int max_sb_coeff; int book_choice[12][2]; int total_bits_cost = 0; int offset, length, end; int q; /* set local pointer to sfb_offset */ int *sfb_offset = coderInfo->sfb_offset; int nr_of_sfb = coderInfo->nr_of_sfb; /* each section is 'hop' scalefactor bands wide */ for (i=0; i < nr_of_sfb; i=i+hop){#ifdef SLOW if ((i+hop) > nr_of_sfb) q = nr_of_sfb; else#endif q = i+hop; { /* find the maximum absolute value in the current spectral section, to see what tables are available to use */ max_sb_coeff = 0; for (j=sfb_offset[i]; j<sfb_offset[q]; j++){ /* snl */ if (ABS(quant[j]) > max_sb_coeff) max_sb_coeff = ABS(quant[j]); } j = 0; offset = sfb_offset[i];#ifdef SLOW if ((i+hop) > nr_of_sfb){ end = sfb_offset[nr_of_sfb]; } else#endif end = sfb_offset[q]; length = end - offset; /* all spectral coefficients in this section are zero */ if (max_sb_coeff == 0) { book_choice[j][0] = CalcBits(coderInfo,0,quant,offset,length); book_choice[j++][1] = 0; } else { /* if the section does have non-zero coefficients */ if(max_sb_coeff < 2){ book_choice[j][0] = CalcBits(coderInfo,1,quant,offset,length); book_choice[j++][1] = 1; book_choice[j][0] = CalcBits(coderInfo,2,quant,offset,length); book_choice[j++][1] = 2; book_choice[j][0] = CalcBits(coderInfo,3,quant,offset,length); book_choice[j++][1] = 3; } else if (max_sb_coeff < 3){ book_choice[j][0] = CalcBits(coderInfo,3,quant,offset,length); book_choice[j++][1] = 3; book_choice[j][0] = CalcBits(coderInfo,4,quant,offset,length); book_choice[j++][1] = 4; book_choice[j][0] = CalcBits(coderInfo,5,quant,offset,length); book_choice[j++][1] = 5; } else if (max_sb_coeff < 5){ book_choice[j][0] = CalcBits(coderInfo,5,quant,offset,length); book_choice[j++][1] = 5; book_choice[j][0] = CalcBits(coderInfo,6,quant,offset,length); book_choice[j++][1] = 6; book_choice[j][0] = CalcBits(coderInfo,7,quant,offset,length); book_choice[j++][1] = 7; } else if (max_sb_coeff < 8){ book_choice[j][0] = CalcBits(coderInfo,7,quant,offset,length); book_choice[j++][1] = 7; book_choice[j][0] = CalcBits(coderInfo,8,quant,offset,length); book_choice[j++][1] = 8; book_choice[j][0] = CalcBits(coderInfo,9,quant,offset,length); book_choice[j++][1] = 9; } else if (max_sb_coeff < 13){ book_choice[j][0] = CalcBits(coderInfo,9,quant,offset,length); book_choice[j++][1] = 9; book_choice[j][0] = CalcBits(coderInfo,10,quant,offset,length); book_choice[j++][1] = 10; } /* (max_sb_coeff >= 13), choose table 11 */ else { book_choice[j][0] = CalcBits(coderInfo,11,quant,offset,length); book_choice[j++][1] = 11; } } /* find the minimum bit cost and table number for huffman coding this scalefactor section */ min_book_choice[i][1] = book_choice[0][1]; min_book_choice[i][0] = book_choice[0][0]; for(k=1;k<j;k++){ if (book_choice[k][0] < min_book_choice[i][0]){ min_book_choice[i][1] = book_choice[k][1]; min_book_choice[i][0] = book_choice[k][0]; } } total_bits_cost += min_book_choice[i][0]; } } return(total_bits_cost);}static int CalculateEscSequence(int input, int *len_esc_sequence)/* This function takes an element that is larger than 16 and generates the base10 value of the equivalent escape sequence. It returns the escape sequence in the variable, 'output'. It also passed the length of the escape sequence through the parameter, 'len_esc_sequence'.*/{ float x,y; int output; int N; N = -1; y = (float)ABS(input); x = y / 16; while (x >= 1) { N++; x = x/2; } *len_esc_sequence = 2*N + 5; /* the length of the escape sequence in bits */ output = (int)((pow(2,N) - 1)*pow(2,N+5) + y - pow(2,N+4)); return(output);}int OutputBits(CoderInfo *coderInfo,#ifdef DRM int *book, /* we need to change book for VCB11 */#else int book,#endif int *quant, int offset, int length){ /* This function inputs - a specific codebook number, 'book' - the quantized spectral data, 'quant[][]' - the offset into the spectral data to begin scanning, 'offset' - the 'length' of the segment to huffman code -> therefore, the segment quant[offset] to quant[offset+length-1] is huffman coded. This function outputs - the number of bits required, 'bits' using the prescribed codebook, book applied to the given segment of spectral data. There are three parameters that are passed back and forth into this function. data[] and len[] are one-dimensional arrays that store the codebook values and their respective bit lengths. These are used when packing the data for the bitstream in OutputBits(). The index into these arrays is 'coderInfo->spectral_count''. It gets incremented internally in this function as counter, then passed to the outside through outside_counter. The next time OutputBits() is called, counter starts at the value it left off from the previous call. */ int esc_sequence; int len_esc; int index; int bits=0; int tmp; int codebook,i,j; int counter; /* Set up local pointers to coderInfo elements data and len */ int* data= coderInfo->data; int* len= coderInfo->len;#ifdef DRM int* num_data = coderInfo->num_data_cw; int cur_cw_len; int max_esc_sequ = 0;#endif counter = coderInfo->spectral_count;#ifdef DRM switch (*book) {#else switch (book) {#endif case 0: case INTENSITY_HCB2: case INTENSITY_HCB:#ifdef DRM for(i=offset;i<offset+length;i=i+4){#endif /* This case also applies to intensity stereo encoding */ coderInfo->data[counter] = 0; coderInfo->len[counter++] = 0; coderInfo->spectral_count = counter; /* send the current count back to the outside world */#ifdef DRM num_data[coderInfo->cur_cw++] = 1; }#endif return(bits); case 1: for(i=offset;i<offset+length;i=i+4){ index = 27*quant[i] + 9*quant[i+1] + 3*quant[i+2] + quant[i+3] + 40; codebook = huff1[index][LASTINTAB]; tmp = huff1[index][FIRSTINTAB]; bits += tmp; data[counter] = codebook; len[counter++] = tmp;#ifdef DRM
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -