📄 plot_hmm.m
字号:
load hmmpoligonos
load parampoligonos vlcp
for ic=1:nc
for ig=1:ng,
% we etiquate all the repetitions for each class
for ir=1:nr
pl=etiquetado(vlcp{ic,ig}{ir},agrup{ig},Ns{ig},biblio{ig},TOPNtest{ig});
% we evaluate the probability for the 4 HMM
for ihmm=1:nc;
salida(ihmm)=probsec(A{ihmm,ig},B{ihmm,ig},Pi{ihmm,ig},pl);
[alfa,beta,c]=alfabeta(A{ihmm,ig},B{ihmm,ig},Pi{ihmm,ig},pl);
T=size(pl{1},1);
gama=zeros(Ne(ihmm),T);
for t=1:T,
gama(:,t)=(alfa(:,t).*beta(:,t))./(alfa(:,t)'*beta(:,t))+realmin;
end;
prob=zeros(Ne(ihmm),T);
for t=1:T
prob(:,t)=prodBO(B{ihmm,ig},pl,t);
end
Eps=zeros(Ne(ihmm),Ne(ihmm));
for t=1:T-1,
for i=1:Ne(ihmm),
Eps(i,:)=Eps(i,:)+alfa(i,t)*(A{ihmm,ig}(i,:).*(prob(:,t+1))'.*beta(:,t+1)');
end;
end;
qP=viterbi(A{ihmm,ig},B{ihmm,ig},Pi{ihmm,ig},pl);
h3=figure(3)
subplot(211)
%plot(eval(['angulo',num2str(ic),'/pi']),eval(['radio',num2str(ic)]))
% we plot the gamma values for each repetition and classes
plot(eval(['radio',num2str(ic)]))
title(['class real: ',num2str(ic),'HMM model of the class: ',num2str(ihmm),' group and repetition: ', num2str(ig),' ',num2str(ir)])
subplot(212)
imagesc(gama);
title(['graph 1: radius, graph 2: Gamma']);
h4=figure(4)
subplot(211)
plot(qP);
title([' class real: ',num2str(ic),' HMM model of the class: ',num2str(ihmm),' group and repetition: ', num2str(ig),' ',num2str(ir),])
subplot(212)
imagesc(alfa);
title(['graph 1: most probable state sequence with viterbi, graph 2: Alpha']);
pause
% saveas(h3,'fig3.jpg','jpg');
% saveas(h4,'fig4.jpg','jpg');
end
end;
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -