📄 msp430spidmap.nc
字号:
/** * Copyright (c) 2005-2006 Arched Rock Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the * distribution. * - Neither the name of the Arched Rock Corporation nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * ARCHED ROCK OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE *//** * @author Jonathan Hui <jhui@archedrock.com> * @author Mark Hays * @author Roman Lim * @version $Revision: 1.6 $ $Date: 2008/02/28 17:28:12 $ */generic module Msp430SpiDmaP( uint16_t IFG_addr, uint16_t TXBUF_addr, uint8_t TXIFG, uint16_t TXTRIG, uint16_t RXBUF_addr, uint8_t RXIFG, uint16_t RXTRIG ) { provides interface Resource[ uint8_t id ]; provides interface ResourceConfigure[ uint8_t id ]; provides interface SpiByte; provides interface SpiPacket[ uint8_t id ]; uses interface Msp430DmaChannel as DmaChannel1; uses interface Msp430DmaChannel as DmaChannel2; uses interface Resource as UsartResource[ uint8_t id ]; uses interface Msp430SpiConfigure[uint8_t id ]; uses interface HplMsp430Usart as Usart; uses interface HplMsp430UsartInterrupts as UsartInterrupts; uses interface Leds;}implementation {#define IFG (*(volatile uint8_t*)IFG_addr) uint8_t* m_tx_buf; uint8_t* m_rx_buf; uint16_t m_len; uint8_t m_client; uint8_t m_dump; void signalDone( error_t error ); task void signalDone_task(); async command error_t Resource.immediateRequest[ uint8_t id ]() { return call UsartResource.immediateRequest[ id ](); } async command error_t Resource.request[ uint8_t id ]() { return call UsartResource.request[ id ](); } async command error_t Resource.release[ uint8_t id ]() { return call UsartResource.release[ id ](); } async command void ResourceConfigure.configure[ uint8_t id ]() { call Usart.setModeSpi(call Msp430SpiConfigure.getConfig[id]()); } async command void ResourceConfigure.unconfigure[ uint8_t id ]() { call Usart.resetUsart(TRUE); call Usart.disableSpi(); call Usart.resetUsart(FALSE); } event void UsartResource.granted[ uint8_t id ]() { signal Resource.granted[ id ](); } async command uint8_t Resource.isOwner[ uint8_t id ]() { return call UsartResource.isOwner[ id ](); } default async command error_t UsartResource.isOwner[ uint8_t id ]() { return FAIL; } default async command error_t UsartResource.request[ uint8_t id ]() { return FAIL; } default async command error_t UsartResource.immediateRequest[ uint8_t id ]() { return FAIL; } default async command error_t UsartResource.release[ uint8_t id ]() { return FAIL; } default async command msp430_spi_union_config_t* Msp430SpiConfigure.getConfig[uint8_t id]() { return &msp430_spi_default_config; } default event void Resource.granted[ uint8_t id ]() {} async command uint8_t SpiByte.write( uint8_t tx ) { call Usart.tx( tx ); while( !call Usart.isRxIntrPending() ); call Usart.clrRxIntr(); return call Usart.rx(); } async command error_t SpiPacket.send[ uint8_t id ]( uint8_t* tx_buf, uint8_t* rx_buf, uint16_t len ) { atomic { m_client = id; m_tx_buf = tx_buf; m_rx_buf = rx_buf; m_len = len; } if ( len ) { // clear the interrupt flags IFG &= ~( TXIFG | RXIFG ); // set up the RX xfer call DmaChannel1.setupTransfer(DMA_SINGLE_TRANSFER, RXTRIG, DMA_EDGE_SENSITIVE, (void *) RXBUF_addr, rx_buf ? rx_buf : &m_dump, len, DMA_BYTE, DMA_BYTE, DMA_ADDRESS_UNCHANGED, rx_buf ? DMA_ADDRESS_INCREMENTED : DMA_ADDRESS_UNCHANGED); // this doesn't start a transfer; it simply enables the channel call DmaChannel1.startTransfer(); // set up the TX xfer call DmaChannel2.setupTransfer(DMA_SINGLE_TRANSFER, TXTRIG, DMA_EDGE_SENSITIVE, tx_buf, (void *) TXBUF_addr, len, DMA_BYTE, DMA_BYTE, DMA_ADDRESS_INCREMENTED, DMA_ADDRESS_UNCHANGED); // this doesn't start a transfer; it simply enables the channel call DmaChannel2.startTransfer(); // pong the tx flag to get things rolling IFG |= TXIFG; } else { post signalDone_task(); } return SUCCESS; } task void signalDone_task() { atomic signalDone( SUCCESS ); } async event void DmaChannel1.transferDone( error_t error ) { signalDone( error ); } async event void DmaChannel2.transferDone( error_t error ) {} void signalDone( error_t error ) { signal SpiPacket.sendDone[ m_client ]( m_tx_buf, m_rx_buf, m_len, error ); } async event void UsartInterrupts.txDone() {} async event void UsartInterrupts.rxDone( uint8_t data ) {} default async event void SpiPacket.sendDone[ uint8_t id ]( uint8_t* tx_buf, uint8_t* rx_buf, uint16_t len, error_t error ) {}}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -