📄 uart4b6bphyp.nc
字号:
/* -*- mode:c++; indent-tabs-mode: nil -*- * Copyright (c) 2006, Technische Universitaet Berlin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - Neither the name of the Technische Universitaet Berlin nor the names * of its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */#include "code4b6b.h"/** * Implementation of the physical layer for the eyesIFX byte radio. * Together with the PacketSerializerP this module turns byte streams * into packets. * * @author Andreas Koepke <koepke@tkn.tu-berlin.de> */module Uart4b6bPhyP { provides { interface Init; interface PhyPacketTx; interface RadioByteComm as SerializerRadioByteComm; interface PhyPacketRx; interface UartPhyControl; } uses { interface RadioByteComm; interface Alarm<T32khz, uint16_t> as RxByteTimer;#ifdef UART_DEBUG interface SerialDebug;#endif }}implementation{#ifdef UART_DEBUG void sdDebug(uint16_t p) { call SerialDebug.putPlace(p); }#else void sdDebug(uint16_t p) {};#endif /* Module Definitions */ typedef enum { STATE_PREAMBLE, STATE_PREAMBLE_CODE, STATE_SYNC, STATE_SFD1, STATE_SFD2, STATE_SFD3, STATE_HEADER_DONE, STATE_DATA_HIGH_OR_SFD, STATE_DATA_HIGH, STATE_DATA_MIDDLE, STATE_DATA_LOW, STATE_DATA_LOW_FOOTER, STATE_FOOTER_START, STATE_FOOTER_DONE } phyState_t; /* constants */ enum { PREAMBLE_LENGTH=2, BYTE_TIME=TDA5250_32KHZ_BYTE_TIME+3, PREAMBLE_BYTE=0x55, SYNC_BYTE=0xFF, SFD_BYTE=0x83, SFD_BYTE2=0x7c }; /** Module Global Variables */ phyState_t phyState; // Current Phy state State uint16_t preambleCount; uint16_t numPreambles; // Number of preambles to send before the packet uint8_t byteTime; // max. time between two bytes uint8_t bufByte; /* Local Function Declarations */ void TransmitNextByte(); void ReceiveNextByte(uint8_t data); /* Radio Init */ command error_t Init.init(){ atomic { phyState = STATE_PREAMBLE; numPreambles = PREAMBLE_LENGTH; byteTime = BYTE_TIME; }#ifdef UART_DEBUG call SerialDebug.putShortDesc("U4b6bP");#endif return SUCCESS; } async command error_t UartPhyControl.setNumPreambles(uint16_t numPreambleBytes) { atomic { numPreambles = numPreambleBytes; } return SUCCESS; } command error_t UartPhyControl.setByteTimeout(uint8_t byteTimeout) { if (call RxByteTimer.isRunning() == TRUE) { return FAIL; } else { byteTime = byteTimeout * 33; return SUCCESS; } } async command bool UartPhyControl.isBusy() { return phyState != STATE_PREAMBLE; } void resetState() { call RxByteTimer.stop(); if(phyState >= STATE_DATA_HIGH) { signal PhyPacketRx.recvFooterDone(FAIL); sdDebug(10); } phyState = STATE_PREAMBLE; } async event void RxByteTimer.fired() { // no bytes have arrived, so... resetState(); } async command void PhyPacketTx.sendHeader() { phyState = STATE_PREAMBLE; preambleCount = numPreambles; TransmitNextByte(); } async command void SerializerRadioByteComm.txByte(uint8_t data) { uint8_t high = nibbleToSixBit[(data & 0xf0) >> 4]; uint8_t low = nibbleToSixBit[data & 0x0f]; if(phyState == STATE_DATA_HIGH) { high <<= 2; if(low & 0x20) high |= 2; if(low & 0x10) high |= 1; bufByte = low << 4; call RadioByteComm.txByte(high); phyState = STATE_DATA_MIDDLE; } else { call RadioByteComm.txByte(bufByte | (high >> 2)); if(high & 0x02) low |= 0x80; if(high & 0x01) low |= 0x40; bufByte = low; phyState = STATE_DATA_LOW; } } async command bool SerializerRadioByteComm.isTxDone() { return call RadioByteComm.isTxDone(); } async command void PhyPacketTx.sendFooter() { if(phyState == STATE_DATA_MIDDLE) { bufByte |= (nibbleToSixBit[0] >> 2); phyState = STATE_DATA_LOW_FOOTER; call RadioByteComm.txByte(bufByte); } else { phyState = STATE_FOOTER_START; TransmitNextByte(); } } /* Radio Recv */ async command void PhyPacketRx.recvFooter() { // currently there is no footer // atomic phyState = STATE_FOOTER_START; phyState = STATE_PREAMBLE; call RxByteTimer.stop(); signal PhyPacketRx.recvFooterDone(SUCCESS); sdDebug(20); } /* Tx Done */ async event void RadioByteComm.txByteReady(error_t error) { if(error == SUCCESS) { TransmitNextByte(); } else { signal SerializerRadioByteComm.txByteReady(error); phyState = STATE_PREAMBLE; } } void TransmitNextByte() { switch(phyState) { case STATE_PREAMBLE: if(preambleCount > 1) { preambleCount--; } else { phyState = STATE_SYNC; } call RadioByteComm.txByte(PREAMBLE_BYTE); break; case STATE_SYNC: phyState = STATE_SFD1; call RadioByteComm.txByte(SYNC_BYTE); break; case STATE_SFD1: phyState = STATE_SFD2; call RadioByteComm.txByte(SFD_BYTE); break; case STATE_SFD2: phyState = STATE_SFD3; call RadioByteComm.txByte(SFD_BYTE); break; case STATE_SFD3: phyState = STATE_HEADER_DONE; call RadioByteComm.txByte(SFD_BYTE); break; case STATE_HEADER_DONE: phyState = STATE_DATA_HIGH; signal PhyPacketTx.sendHeaderDone(); break; case STATE_DATA_HIGH: signal SerializerRadioByteComm.txByteReady(SUCCESS); break; case STATE_DATA_MIDDLE: signal SerializerRadioByteComm.txByteReady(SUCCESS); break; case STATE_DATA_LOW: call RadioByteComm.txByte(bufByte); phyState = STATE_DATA_HIGH; break; case STATE_DATA_LOW_FOOTER: phyState = STATE_FOOTER_START; call RadioByteComm.txByte(bufByte); break; case STATE_FOOTER_START: /* Pseudo-Footer: the MSP430 has two buffers: one for * transmit, one to store the next byte to be transmitted, * this footer fills the next-to-transmit buffer, to make * sure that the last real byte is actually * transmitted. The byte stored by this call may not be * transmitted fully or not at all. */ phyState = STATE_FOOTER_DONE; call RadioByteComm.txByte(bufByte); break; case STATE_FOOTER_DONE: phyState = STATE_PREAMBLE; signal PhyPacketTx.sendFooterDone(); break; default: break; } } /* Rx Done */ async event void RadioByteComm.rxByteReady(uint8_t data) { uint8_t decodedByte; uint8_t low; uint8_t high; if((data == SFD_BYTE) && (phyState != STATE_SFD2) && (phyState != STATE_DATA_HIGH_OR_SFD)) { resetState(); phyState = STATE_SFD2; call RxByteTimer.start(byteTime<<1); } else { switch(phyState) { case STATE_SFD2: if(data == SFD_BYTE) { phyState = STATE_DATA_HIGH_OR_SFD; call RxByteTimer.start(byteTime << 1); } else { resetState(); } break; case STATE_DATA_HIGH_OR_SFD: if(data != SFD_BYTE) { decodedByte = sixBitToNibble[data >> 2]; if(decodedByte != ILLEGAL_CODE) { bufByte = decodedByte << 2; bufByte |= data & 0x03; bufByte <<= 2; phyState = STATE_DATA_MIDDLE; signal PhyPacketRx.recvHeaderDone(SUCCESS); call RxByteTimer.start(byteTime); } else { resetState(); } } else { phyState = STATE_DATA_HIGH; signal PhyPacketRx.recvHeaderDone(SUCCESS); call RxByteTimer.start(byteTime); } break; case STATE_DATA_HIGH: decodedByte = sixBitToNibble[data >> 2]; if(decodedByte != ILLEGAL_CODE) { bufByte = decodedByte << 2; bufByte |= data & 0x03; bufByte <<= 2; phyState = STATE_DATA_MIDDLE; call RxByteTimer.start(byteTime); } else { resetState(); } break; case STATE_DATA_MIDDLE: decodedByte = sixBitToNibble[((bufByte & 0x0f)<<2) | (data >> 4)]; if(decodedByte != ILLEGAL_CODE) { phyState = STATE_DATA_LOW; signal SerializerRadioByteComm.rxByteReady((bufByte & 0xf0) | decodedByte); bufByte = (data & 0x0f) << 2; call RxByteTimer.start(byteTime); } else { resetState(); } break; case STATE_DATA_LOW: decodedByte = sixBitToNibble[bufByte | (data >> 6)]; if(decodedByte != ILLEGAL_CODE) { bufByte = (decodedByte << 4); decodedByte = sixBitToNibble[data & 0x3f]; if(decodedByte != ILLEGAL_CODE) { phyState = STATE_DATA_HIGH; signal SerializerRadioByteComm.rxByteReady(bufByte | decodedByte); call RxByteTimer.start(byteTime); } else { resetState(); } } else { resetState(); } break; case STATE_PREAMBLE: low = data & 0xf; high = data >> 4; if((low > 0) && (low < 0xf) && (high > 0) && (high < 0xf)) { phyState = STATE_PREAMBLE_CODE; call RxByteTimer.start(byteTime); } break; case STATE_PREAMBLE_CODE: low = data & 0xf; high = data >> 4; if((low == 0) || (low == 0xf) || (high == 0) || (high == 0xf)) { phyState = STATE_PREAMBLE; } else { call RxByteTimer.start(byteTime); } break; // maybe there will be a time.... we will need this. but for now there is no footer //case STATE_FOOTER_START: //phyState = STATE_FOOTER_DONE; //break; //case STATE_FOOTER_DONE: //phyState = STATE_NULL; //signal PhyPacketRx.recvFooterDone(TRUE); //break; default: break; } } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -