⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 uart4b6bphyp.nc

📁 tinyos2.0版本驱动
💻 NC
字号:
/* -*- mode:c++; indent-tabs-mode: nil -*- * Copyright (c) 2006, Technische Universitaet Berlin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright notice, *   this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright *   notice, this list of conditions and the following disclaimer in the *   documentation and/or other materials provided with the distribution. * - Neither the name of the Technische Universitaet Berlin nor the names *   of its contributors may be used to endorse or promote products derived *   from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */#include "code4b6b.h"/** * Implementation of the physical layer for the eyesIFX byte radio. * Together with the PacketSerializerP this module turns byte streams  * into packets. * * @author Andreas Koepke <koepke@tkn.tu-berlin.de> */module Uart4b6bPhyP {    provides {        interface Init;        interface PhyPacketTx;        interface RadioByteComm as SerializerRadioByteComm;        interface PhyPacketRx;        interface UartPhyControl;    }    uses {        interface RadioByteComm;        interface Alarm<T32khz, uint16_t> as RxByteTimer;#ifdef UART_DEBUG        interface SerialDebug;#endif    }}implementation{#ifdef UART_DEBUG    void sdDebug(uint16_t p) {        call SerialDebug.putPlace(p);    }#else    void sdDebug(uint16_t p) {};#endif    /* Module Definitions  */    typedef enum {        STATE_PREAMBLE,        STATE_PREAMBLE_CODE,        STATE_SYNC,        STATE_SFD1,        STATE_SFD2,        STATE_SFD3,        STATE_HEADER_DONE,        STATE_DATA_HIGH_OR_SFD,        STATE_DATA_HIGH,        STATE_DATA_MIDDLE,        STATE_DATA_LOW,        STATE_DATA_LOW_FOOTER,        STATE_FOOTER_START,        STATE_FOOTER_DONE    } phyState_t;    /* constants */    enum {        PREAMBLE_LENGTH=2,        BYTE_TIME=TDA5250_32KHZ_BYTE_TIME+3,        PREAMBLE_BYTE=0x55,        SYNC_BYTE=0xFF,        SFD_BYTE=0x83,        SFD_BYTE2=0x7c    };        /** Module Global Variables  */    phyState_t phyState;    // Current Phy state State    uint16_t preambleCount;    uint16_t numPreambles;  // Number of preambles to send before the packet    uint8_t byteTime;       // max. time between two bytes    uint8_t bufByte;    /* Local Function Declarations */    void TransmitNextByte();    void ReceiveNextByte(uint8_t data);    /* Radio Init */    command error_t Init.init(){        atomic {            phyState = STATE_PREAMBLE;            numPreambles = PREAMBLE_LENGTH;            byteTime = BYTE_TIME;        }#ifdef UART_DEBUG        call SerialDebug.putShortDesc("U4b6bP");#endif        return SUCCESS;    }        async command error_t UartPhyControl.setNumPreambles(uint16_t numPreambleBytes) {        atomic {            numPreambles = numPreambleBytes;        }        return SUCCESS;    }        command error_t UartPhyControl.setByteTimeout(uint8_t byteTimeout) {        if (call RxByteTimer.isRunning() == TRUE) {            return FAIL;        } else {            byteTime = byteTimeout * 33;            return SUCCESS;        }    }        async command bool UartPhyControl.isBusy() {        return phyState != STATE_PREAMBLE;    }        void resetState() {        call RxByteTimer.stop();        if(phyState >= STATE_DATA_HIGH) {            signal PhyPacketRx.recvFooterDone(FAIL);            sdDebug(10);        }        phyState = STATE_PREAMBLE;    }    async event void RxByteTimer.fired() {        // no bytes have arrived, so...        resetState();    }    async command void PhyPacketTx.sendHeader() {        phyState = STATE_PREAMBLE;        preambleCount = numPreambles;        TransmitNextByte();    }    async command void SerializerRadioByteComm.txByte(uint8_t data) {        uint8_t high = nibbleToSixBit[(data & 0xf0) >> 4];        uint8_t low = nibbleToSixBit[data & 0x0f];        if(phyState == STATE_DATA_HIGH) {            high <<= 2;            if(low & 0x20) high |= 2;            if(low & 0x10) high |= 1;            bufByte = low << 4;            call RadioByteComm.txByte(high);            phyState = STATE_DATA_MIDDLE;        }        else {            call RadioByteComm.txByte(bufByte | (high >> 2));            if(high & 0x02) low |= 0x80;            if(high & 0x01) low |= 0x40;            bufByte = low;            phyState = STATE_DATA_LOW;        }    }    async command bool SerializerRadioByteComm.isTxDone() {        return call RadioByteComm.isTxDone();    }    async command void PhyPacketTx.sendFooter() {        if(phyState == STATE_DATA_MIDDLE) {            bufByte |= (nibbleToSixBit[0] >> 2);            phyState = STATE_DATA_LOW_FOOTER;            call RadioByteComm.txByte(bufByte);        } else {            phyState = STATE_FOOTER_START;            TransmitNextByte();        }    }        /* Radio Recv */    async command void PhyPacketRx.recvFooter() {        // currently there is no footer        // atomic phyState = STATE_FOOTER_START;        phyState = STATE_PREAMBLE;        call RxByteTimer.stop();        signal PhyPacketRx.recvFooterDone(SUCCESS);        sdDebug(20);    }        /* Tx Done */    async event void RadioByteComm.txByteReady(error_t error) {        if(error == SUCCESS) {            TransmitNextByte();        } else {            signal SerializerRadioByteComm.txByteReady(error);            phyState = STATE_PREAMBLE;        }    }    void TransmitNextByte() {        switch(phyState) {            case STATE_PREAMBLE:                if(preambleCount > 1) {                    preambleCount--;                } else {                    phyState = STATE_SYNC;                }                call RadioByteComm.txByte(PREAMBLE_BYTE);                break;            case STATE_SYNC:                phyState = STATE_SFD1;                call RadioByteComm.txByte(SYNC_BYTE);                break;            case STATE_SFD1:                phyState = STATE_SFD2;                call RadioByteComm.txByte(SFD_BYTE);                break;            case STATE_SFD2:                phyState = STATE_SFD3;                call RadioByteComm.txByte(SFD_BYTE);                break;            case STATE_SFD3:                phyState = STATE_HEADER_DONE;                call RadioByteComm.txByte(SFD_BYTE);                break;            case STATE_HEADER_DONE:                phyState = STATE_DATA_HIGH;                signal PhyPacketTx.sendHeaderDone();                break;            case STATE_DATA_HIGH:                signal SerializerRadioByteComm.txByteReady(SUCCESS);                break;            case STATE_DATA_MIDDLE:                signal SerializerRadioByteComm.txByteReady(SUCCESS);                break;            case STATE_DATA_LOW:                call RadioByteComm.txByte(bufByte);                phyState = STATE_DATA_HIGH;                break;            case STATE_DATA_LOW_FOOTER:                phyState = STATE_FOOTER_START;                call RadioByteComm.txByte(bufByte);                break;            case STATE_FOOTER_START:                /* Pseudo-Footer: the MSP430 has two buffers: one for                 * transmit, one to store the next byte to be transmitted,                 * this footer fills the next-to-transmit buffer, to make                 * sure that the last real byte is actually                 * transmitted. The byte stored by this call may not be                 * transmitted fully or not at all.                  */                phyState = STATE_FOOTER_DONE;                call RadioByteComm.txByte(bufByte);                break;            case STATE_FOOTER_DONE:                phyState = STATE_PREAMBLE;                signal PhyPacketTx.sendFooterDone();                break;            default:                break;        }    }    /* Rx Done */    async event void RadioByteComm.rxByteReady(uint8_t data) {        uint8_t decodedByte;        uint8_t low;        uint8_t high;        if((data == SFD_BYTE) && (phyState != STATE_SFD2) && (phyState != STATE_DATA_HIGH_OR_SFD)) {            resetState();            phyState = STATE_SFD2;            call RxByteTimer.start(byteTime<<1);        }        else {            switch(phyState) {                case STATE_SFD2:                    if(data == SFD_BYTE) {                        phyState = STATE_DATA_HIGH_OR_SFD;                        call RxByteTimer.start(byteTime << 1);                    }                    else {                        resetState();                    }                    break;                case STATE_DATA_HIGH_OR_SFD:                        if(data != SFD_BYTE) {                        decodedByte = sixBitToNibble[data >> 2];                        if(decodedByte != ILLEGAL_CODE) {                            bufByte = decodedByte << 2;                            bufByte |= data & 0x03;                            bufByte <<= 2;                            phyState = STATE_DATA_MIDDLE;                            signal PhyPacketRx.recvHeaderDone(SUCCESS);                            call RxByteTimer.start(byteTime);                        }                        else {                            resetState();                        }                    }                    else {                        phyState = STATE_DATA_HIGH;                        signal PhyPacketRx.recvHeaderDone(SUCCESS);                        call RxByteTimer.start(byteTime);                    }                    break;                case STATE_DATA_HIGH:                    decodedByte = sixBitToNibble[data >> 2];                    if(decodedByte != ILLEGAL_CODE) {                        bufByte = decodedByte << 2;                        bufByte |= data & 0x03;                        bufByte <<= 2;                        phyState = STATE_DATA_MIDDLE;                        call RxByteTimer.start(byteTime);                    }                    else {                        resetState();                    }                    break;                case STATE_DATA_MIDDLE:                    decodedByte = sixBitToNibble[((bufByte & 0x0f)<<2) | (data >> 4)];                    if(decodedByte != ILLEGAL_CODE) {                        phyState = STATE_DATA_LOW;                        signal SerializerRadioByteComm.rxByteReady((bufByte & 0xf0) | decodedByte);                        bufByte = (data & 0x0f) << 2;                        call RxByteTimer.start(byteTime);                    }                    else {                        resetState();                    }                    break;                case STATE_DATA_LOW:                    decodedByte = sixBitToNibble[bufByte | (data >> 6)];                    if(decodedByte != ILLEGAL_CODE) {                        bufByte = (decodedByte << 4);                        decodedByte = sixBitToNibble[data & 0x3f];                        if(decodedByte != ILLEGAL_CODE) {                            phyState = STATE_DATA_HIGH;                            signal SerializerRadioByteComm.rxByteReady(bufByte | decodedByte);                            call RxByteTimer.start(byteTime);                        }                        else {                            resetState();                        }                    }                    else {                        resetState();                    }                    break;                case STATE_PREAMBLE:                    low = data & 0xf;                    high = data >> 4;                    if((low > 0) && (low < 0xf) && (high > 0) && (high < 0xf)) {                        phyState = STATE_PREAMBLE_CODE;                        call RxByteTimer.start(byteTime);                    }                    break;                case STATE_PREAMBLE_CODE:                    low = data & 0xf;                    high = data >> 4;                    if((low == 0) || (low == 0xf) || (high == 0) || (high == 0xf)) {                        phyState = STATE_PREAMBLE;                    }                    else {                        call RxByteTimer.start(byteTime);                    }                    break;                    // maybe there will be a time.... we will need this. but for now there is no footer                    //case STATE_FOOTER_START:                    //phyState = STATE_FOOTER_DONE;                    //break;                    //case STATE_FOOTER_DONE:                    //phyState = STATE_NULL;                    //signal PhyPacketRx.recvFooterDone(TRUE);                    //break;                default:                    break;            }        }            }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -