📄 hplatm128timer0asyncp.nc
字号:
/// $Id: HplAtm128Timer0AsyncP.nc,v 1.1 2008/06/12 14:02:14 klueska Exp $/* * Copyright (c) 2004-2005 Crossbow Technology, Inc. All rights reserved. * * Permission to use, copy, modify, and distribute this software and its * documentation for any purpose, without fee, and without written agreement is * hereby granted, provided that the above copyright notice, the following * two paragraphs and the author appear in all copies of this software. * * IN NO EVENT SHALL CROSSBOW TECHNOLOGY OR ANY OF ITS LICENSORS BE LIABLE TO * ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL * DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN * IF CROSSBOW OR ITS LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * * CROSSBOW TECHNOLOGY AND ITS LICENSORS SPECIFICALLY DISCLAIM ALL WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND NEITHER CROSSBOW NOR ANY LICENSOR HAS ANY * OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR * MODIFICATIONS. *//** * HPL interface to Atmega128 timer 0 in ASYNC mode. This is a specialised * HPL component that assumes that timer 0 is used in ASYNC mode and * includes some workarounds for some of the weirdnesses (delayed overflow * interrupt) of that mode. * * @author Martin Turon <mturon@xbow.com> * @author David Gay <dgay@intel-research.net> */#include <Atm128Timer.h>module HplAtm128Timer0AsyncP { provides { // 8-bit Timers interface HplAtm128Timer<uint8_t> as Timer; interface HplAtm128TimerCtrl8 as TimerCtrl; interface HplAtm128Compare<uint8_t> as Compare; interface McuPowerOverride; interface HplAtm128TimerAsync as TimerAsync; } uses interface PlatformInterrupt;}implementation{ //=== Read the current timer value. =================================== async command uint8_t Timer.get() { return TCNT0; } //=== Set/clear the current timer value. ============================== async command void Timer.set(uint8_t t) { TCNT0 = t; } //=== Read the current timer scale. =================================== async command uint8_t Timer.getScale() { return TCCR0 & 0x7; } //=== Turn off the timers. ============================================ async command void Timer.off() { call Timer.setScale(AVR_CLOCK_OFF); } //=== Write a new timer scale. ======================================== async command void Timer.setScale(uint8_t s) { Atm128TimerControl_t x = call TimerCtrl.getControl(); x.bits.cs = s; call TimerCtrl.setControl(x); } //=== Read the control registers. ===================================== async command Atm128TimerControl_t TimerCtrl.getControl() { return *(Atm128TimerControl_t*)&TCCR0; } //=== Write the control registers. ==================================== async command void TimerCtrl.setControl( Atm128TimerControl_t x ) { TCCR0 = x.flat; } //=== Read the interrupt mask. ===================================== async command Atm128_TIMSK_t TimerCtrl.getInterruptMask() { return *(Atm128_TIMSK_t*)&TIMSK; } //=== Write the interrupt mask. ==================================== DEFINE_UNION_CAST(TimerMask8_2int, Atm128_TIMSK_t, uint8_t); DEFINE_UNION_CAST(TimerMask16_2int, Atm128_ETIMSK_t, uint8_t); async command void TimerCtrl.setInterruptMask( Atm128_TIMSK_t x ) { TIMSK = TimerMask8_2int(x); } //=== Read the interrupt flags. ===================================== async command Atm128_TIFR_t TimerCtrl.getInterruptFlag() { return *(Atm128_TIFR_t*)&TIFR; } //=== Write the interrupt flags. ==================================== DEFINE_UNION_CAST(TimerFlags8_2int, Atm128_TIFR_t, uint8_t); DEFINE_UNION_CAST(TimerFlags16_2int, Atm128_ETIFR_t, uint8_t); async command void TimerCtrl.setInterruptFlag( Atm128_TIFR_t x ) { TIFR = TimerFlags8_2int(x); } //=== Timer 8-bit implementation. ==================================== async command void Timer.reset() { TIFR = 1 << TOV0; } async command void Timer.start() { SET_BIT(TIMSK, TOIE0); } async command void Timer.stop() { CLR_BIT(TIMSK, TOIE0); } bool overflowed() { return (call TimerCtrl.getInterruptFlag()).bits.tov0; } async command bool Timer.test() { return overflowed(); } async command bool Timer.isOn() { return (call TimerCtrl.getInterruptMask()).bits.toie0; } async command void Compare.reset() { TIFR = 1 << OCF0; } async command void Compare.start() { SET_BIT(TIMSK,OCIE0); } async command void Compare.stop() { CLR_BIT(TIMSK,OCIE0); } async command bool Compare.test() { return (call TimerCtrl.getInterruptFlag()).bits.ocf0; } async command bool Compare.isOn() { return (call TimerCtrl.getInterruptMask()).bits.ocie0; } //=== Read the compare registers. ===================================== async command uint8_t Compare.get() { return OCR0; } //=== Write the compare registers. ==================================== async command void Compare.set(uint8_t t) { OCR0 = t; } //=== Timer interrupts signals ======================================== inline void stabiliseTimer0() { TCCR0 = TCCR0; while (ASSR & 1 << TCR0UB) ; } /** * On the atm128, there is a small latency when waking up from * POWER_SAVE mode. So if a timer is going to go off very soon, it's * better to drop down until EXT_STANDBY, which has a 6 cycle wakeup * latency. This function calculates whether staying in EXT_STANDBY * is needed. If the timer is not running it returns POWER_DOWN. * Please refer to TEP 112 and the atm128 datasheet for details. */ async command mcu_power_t McuPowerOverride.lowestState() { uint8_t diff; // We need to make sure that the sleep wakeup latency will not // cause us to miss a timer. POWER_SAVE if (TIMSK & (1 << OCIE0 | 1 << TOIE0)) { // need to wait for timer 0 updates propagate before sleeping // (we don't need to worry about reentering sleep mode too early, // as the wake ups from timer0 wait at least one TOSC1 cycle // anyway - see the stabiliseTimer0 function) while (ASSR & (1 << TCN0UB | 1 << OCR0UB | 1 << TCR0UB)) ; diff = OCR0 - TCNT0; if (diff < EXT_STANDBY_T0_THRESHOLD || TCNT0 > 256 - EXT_STANDBY_T0_THRESHOLD) return ATM128_POWER_EXT_STANDBY; return ATM128_POWER_SAVE; } else { return ATM128_POWER_DOWN; } } default async event void Compare.fired() { } AVR_ATOMIC_HANDLER(SIG_OUTPUT_COMPARE0) { stabiliseTimer0(); signal Compare.fired(); call PlatformInterrupt.postAmble(); } default async event void Timer.overflow() { } AVR_ATOMIC_HANDLER(SIG_OVERFLOW0) { stabiliseTimer0(); signal Timer.overflow(); call PlatformInterrupt.postAmble(); } // Asynchronous status register support async command Atm128Assr_t TimerAsync.getAssr() { return *(Atm128Assr_t *)&ASSR; } async command void TimerAsync.setAssr(Atm128Assr_t x) { ASSR = x.flat; } async command void TimerAsync.setTimer0Asynchronous() { ASSR |= 1 << AS0; } async command int TimerAsync.controlBusy() { return (ASSR & (1 << TCR0UB)) != 0; } async command int TimerAsync.compareBusy() { return (ASSR & (1 << OCR0UB)) != 0; } async command int TimerAsync.countBusy() { return (ASSR & (1 << TCN0UB)) != 0; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -