⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 simschedulerbasicp.nc

📁 tinyos2.0版本驱动
💻 NC
字号:
/* * "Copyright (c) 2005 Stanford University. All rights reserved. * * Permission to use, copy, modify, and distribute this software and * its documentation for any purpose, without fee, and without written * agreement is hereby granted, provided that the above copyright * notice, the following two paragraphs and the author appear in all * copies of this software. *  * IN NO EVENT SHALL STANFORD UNIVERSITY BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN * IF STANFORD UNIVERSITY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. *  * STANFORD UNIVERSITY SPECIFICALLY DISCLAIMS ANY WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE * PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND STANFORD UNIVERSITY * HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, * ENHANCEMENTS, OR MODIFICATIONS." *//** * * SimSchedulerBasic implements the default TinyOS scheduler sequence * (documented in TEP 106) for the TOSSIM platform. Its major departure * from the standard TinyOS scheduler is that tasks are executed * within TOSSIM events. This introduces task latency. * * @author Philip Levis * @author Cory Sharp * @date   August 19 2005 */#include <sim_event_queue.h>module SimSchedulerBasicP {  provides interface Scheduler;  provides interface TaskBasic[uint8_t id];}implementation{  enum  {    NUM_TASKS = uniqueCount("TinySchedulerC.TaskBasic"),    NO_TASK = 255,  };  uint8_t m_head;  uint8_t m_tail;  uint8_t m_next[NUM_TASKS];  /* This simulation state is kept on a per-node basis.     Better to take advantage of nesC's automatic state replication     than try to do it ourselves. */  bool sim_scheduler_event_pending = FALSE;  sim_event_t sim_scheduler_event;  int sim_config_task_latency() {return 100;}    /* Only enqueue the event for execution if it is     not already enqueued. If there are more tasks in the     queue, the event will re-enqueue itself (see the handle     function). */    void sim_scheduler_submit_event() {    if (sim_scheduler_event_pending == FALSE) {      sim_scheduler_event.time = sim_time() + sim_config_task_latency();      sim_queue_insert(&sim_scheduler_event);      sim_scheduler_event_pending = TRUE;    }  }  void sim_scheduler_event_handle(sim_event_t* e) {    sim_scheduler_event_pending = FALSE;    // If we successfully executed a task, re-enqueue the event. This    // will always succeed, as sim_scheduler_event_pending was just    // set to be false.  Note that this means there will be an extra    // execution (on an empty task queue). We could optimize this    // away, but this code is cleaner, and more accurately reflects    // the real TinyOS main loop.        if (call Scheduler.runNextTask()) {      sim_scheduler_submit_event();    }  }    /* Initialize a scheduler event. This should only be done   * once, when the scheduler is initialized. */  void sim_scheduler_event_init(sim_event_t* e) {    e->mote = sim_node();    e->force = 0;    e->data = NULL;    e->handle = sim_scheduler_event_handle;    e->cleanup = sim_queue_cleanup_none;  }  // Helper functions (internal functions) intentionally do not have atomic  // sections.  It is left as the duty of the exported interface functions to  // manage atomicity to minimize chances for binary code bloat.  // move the head forward  // if the head is at the end, mark the tail at the end, too  // mark the task as not in the queue  uint8_t popTask()  {    if( m_head != NO_TASK )    {      uint8_t id = m_head;      m_head = m_next[m_head];      if( m_head == NO_TASK )      {	m_tail = NO_TASK;      }      m_next[id] = NO_TASK;      return id;    }    else    {      return NO_TASK;    }  }    bool isWaiting( uint8_t id )  {    return (m_next[id] != NO_TASK) || (m_tail == id);  }  bool pushTask( uint8_t id )  {    if( !isWaiting(id) )    {      if( m_head == NO_TASK )      {	m_head = id;	m_tail = id;      }      else      {	m_next[m_tail] = id;	m_tail = id;      }      return TRUE;    }    else    {      return FALSE;    }  }    command void Scheduler.init()  {    dbg("Scheduler", "Initializing scheduler.\n");    atomic    {      memset( m_next, NO_TASK, sizeof(m_next) );      m_head = NO_TASK;      m_tail = NO_TASK;      sim_scheduler_event_pending = FALSE;      sim_scheduler_event_init(&sim_scheduler_event);    }  }    command bool Scheduler.runNextTask()  {    uint8_t nextTask;    atomic    {      nextTask = popTask();      if( nextTask == NO_TASK )      {	dbg("Scheduler", "Told to run next task, but no task to run.\n");	return FALSE;      }    }    dbg("Scheduler", "Running task %hhu.\n", nextTask);    signal TaskBasic.runTask[nextTask]();    return TRUE;  }  command void Scheduler.taskLoop() {    // This should never run.  }    /**   * Return SUCCESS if the post succeeded, EBUSY if it was already posted.   */    async command error_t TaskBasic.postTask[uint8_t id]()  {    error_t result;    atomic {      result =  pushTask(id) ? SUCCESS : EBUSY;    }    if (result == SUCCESS) {      dbg("Scheduler", "Posting task %hhu.\n", id);      sim_scheduler_submit_event();    }    else {      dbg("Scheduler", "Posting task %hhu, but already posted.\n", id);    }    return result;  }  default event void TaskBasic.runTask[uint8_t id]()  {  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -