⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 virtualizealarmc.nc

📁 tinyos2.0版本驱动
💻 NC
字号:
//$Id: VirtualizeAlarmC.nc,v 1.6 2008/05/30 16:25:10 janhauer Exp $/* "Copyright (c) 2000-2003 The Regents of the University of California.   * All rights reserved. * * Permission to use, copy, modify, and distribute this software and its * documentation for any purpose, without fee, and without written agreement * is hereby granted, provided that the above copyright notice, the following * two paragraphs and the author appear in all copies of this software. *  * IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT * OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY * OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *  * THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS." *//** * VirtualizeAlarmC uses a single Alarm to create up to 255 virtual alarms. * Note that a virtualized Alarm will have significantly more overhead than * an Alarm built on a hardware compare register. * * @param precision_tag A type indicating the precision of the Alarm being  *   virtualized. * @param num_alarms Number of virtual alarms to create. * * @author Cory Sharp <cssharp@eecs.berkeley.edu> */generic module VirtualizeAlarmC(typedef precision_tag, typedef size_type @integer(), int num_alarms){  provides interface Init;  provides interface Alarm<precision_tag,size_type> as Alarm[uint8_t id];  uses interface Alarm<precision_tag,size_type> as AlarmFrom;}implementation{  enum {    NUM_ALARMS = num_alarms,  };  typedef struct {    size_type t0;    size_type dt;  } alarm_t;  // css 26 jul 2006: All computations with respect to the current time ("now")  // require that "now" is (non-strictly) monotonically increasing.  Calling  // setNextAlarm within Alarm.start within Alarm.fired within signalAlarms  // breaks this monotonicity requirements when "now" is cached at the start of  // the function.  Two ways around this: 1) refresh "now" each time it is  // used, or 2) use the is_signaling flag to prevent setNextAlarm from being  // called inside signalAlarms.  The latter is generally more efficient by  // preventing redundant calls to setNextAlarm at the expense of an extra byte  // of RAM, so that's what the code does now.  Update: option 2 is  // unacceptable because an Alarm.start could be called within some other  // Alarm.fired, which can break monotonicity in now.  // A struct of member variables so only one memset is called for init.  struct {    alarm_t alarm[NUM_ALARMS];    bool isset[NUM_ALARMS];    bool is_signaling;  } m;  command error_t Init.init() {    memset( &m, 0, sizeof(m) );    return SUCCESS;  }  void setNextAlarm() {    if( !m.is_signaling ) {      // css 25 jul 2006: To help prevent various problems with overflow, the      // elapsed time from t0 for a particular alarm is calculated as      // elapsed=now-t0 then dt-=elapsed and t0=now.  However, this means that      // now must be a monotonically increasing value with each call to      // setNextAlarm -- overflow in now is okay, but passing in older values of      // now=t0 for some arbitrary t0 is not okay, which is what the previous      // version of setAlarm did.      const size_type now = call AlarmFrom.getNow();      const alarm_t* pEnd = m.alarm+NUM_ALARMS;      bool isset = FALSE;      alarm_t* p = m.alarm;      bool* pset = m.isset;      size_type dt = ((size_type)0)-((size_type)1);      for( ; p!=pEnd; p++,pset++ ) {        if( *pset ) {          size_type elapsed = now - p->t0;          if( p->dt <= elapsed ) {            p->t0 += p->dt;            p->dt = 0;          }          else {            p->t0 = now;            p->dt -= elapsed;          }          if( p->dt <= dt ) {            dt = p->dt;            isset = TRUE;          }        }      }      if( isset ) {        // css 25 jul 2006: If dt is big, then wait half of dt.  This helps        // significantly reduce the chance of overflow in the elapsed calculation        // for the alarm.  "big" is if the most signficant bit in dt is set.        if( dt & (((size_type)1) << (8*sizeof(size_type)-1)) )          dt >>= 1;        call AlarmFrom.startAt( now, dt );      }      else {        call AlarmFrom.stop();      }    }  }    void signalAlarms() {    uint8_t id;    m.is_signaling = TRUE;    for( id=0; id<NUM_ALARMS; id++ ) {      if( m.isset[id] ) {        //size_type elapsed = call AlarmFrom.getNow() - m.alarm[id].t0;        //if( m.alarm[id].dt <= elapsed ) {        size_type t0 = m.alarm[id].t0;        size_type elapsed = call AlarmFrom.getNow() - t0;        if( m.alarm[id].dt <= elapsed ) {          m.isset[id] = FALSE;          signal Alarm.fired[id]();        }      }    }    m.is_signaling = FALSE;  }  // basic interface  async command void Alarm.start[uint8_t id]( size_type dt ) {    call Alarm.startAt[id]( call AlarmFrom.getNow(), dt );  }  async command void Alarm.stop[uint8_t id]() {    atomic m.isset[id] = FALSE;  }  async event void AlarmFrom.fired() {    atomic {      signalAlarms();      setNextAlarm();    }  }  // extended interface  async command bool Alarm.isRunning[uint8_t id]() {    return m.isset[id];  }  async command void Alarm.startAt[uint8_t id]( size_type t0, size_type dt ) {    atomic {      m.alarm[id].t0 = t0;      m.alarm[id].dt = dt;      m.isset[id] = TRUE;      setNextAlarm();    }  }  async command size_type Alarm.getNow[uint8_t id]() {    return call AlarmFrom.getNow();  }  async command size_type Alarm.getAlarm[uint8_t id]() {    atomic return m.alarm[id].t0 + m.alarm[id].dt;  }  default async event void Alarm.fired[uint8_t id]() {  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -