📄 sar_panel.m
字号:
function results = sar_panel(y,x,W,T,info)
% PURPOSE: computes spatial lag model estimates for spatial panels (N regions*T time periods)
% y = p*W*y + X*b + e, using sparse matrix algorithms
% Supply data sorted first by time and then by spatial units, so first region 1,
% region 2, et cetera, in the first year, then region 1, region 2, et
% cetera in the second year, and so on
% sem_panel computes y and x in deviation of the spatial and/or time means
% (see Baltagi, 2001, Econometric Analysis of Panel Data, ch. 2 and ch. 3)
% ---------------------------------------------------
% USAGE: results = sar_panel(y,x,W,T,info)
% where: y = dependent variable vector
% x = independent variables matrix
% W = spatial weights matrix (standardized)
% T = number of points in time
% info = an (optional) structure variable with input options:
% info.model = 0 pooled model without fixed effects (default, x may contain an intercept)
% = 1 spatial fixed effects (x may not contain an intercept)
% = 2 time period fixed effects (x may not contain an intercept)
% = 3 spatial and time period fixed effects (x may not contain an intercept)
% info.rmin = (optional) minimum value of rho to use in search
% info.rmax = (optional) maximum value of rho to use in search
% info.convg = (optional) convergence criterion (default = 1e-8)
% info.maxit = (optional) maximum # of iterations (default = 500)
% info.lflag = 0 for full lndet computation (default = 1, fastest)
% = 1 for MC lndet approximation (fast for very large problems)
% = 2 for Spline lndet approximation (medium speed)
% info.order = order to use with info.lflag = 1 option (default = 50)
% info.iter = iterations to use with info.lflag = 1 option (default = 30)
% info.lndet = a matrix returned by sar, sar_g, sarp_g, etc.
% containing log-determinant information to save time
% ---------------------------------------------------
% RETURNS: a structure
% results.meth = 'sar' if infomodel=0
% = 'sarsfe' if info.model=1
% = 'sartfe' if info.model=2
% = 'sarstfe' if info.model=3
% results.beta = bhat
% results.rho = rho (p above)
% results.tstat = asymp t-stat (last entry is rho=spatial autoregressive coefficient)
% results.yhat = yhat = [inv(y-p*W)]*x*b
% results.resid = residuals = y-p*W*y-x*b
% results.sige = sige = (y-p*W*y-x*b)'*(y-p*W*y-x*b)/n
% results.rsqr = rsquared
% results.rbar = rbarsquared
% results.sfe = spatial fixed effects (if info.model=1 or 3)
% results.tfe = time period fixed effects (if info.model=2 or 3)
% results.con = intercept (if info.model=3)
% results.lik = log likelihood
% results.nobs = # of observations
% results.nvar = # of explanatory variables in x
% results.tnvar = nvar + W*y + # fixed effects
% results.y = y data vector
% results.iter = # of iterations taken
% results.rmax = 1/max eigenvalue of W (or rmax if input)
% results.rmin = 1/min eigenvalue of W (or rmin if input)
% results.lflag = lflag from input
% results.liter = info.iter option from input
% results.order = info.order option from input
% results.limit = matrix of [rho lower95,logdet approx, upper95] intervals
% for the case of lflag = 1
% results.time1 = time for log determinant calcluation
% results.time2 = time for eigenvalue calculation
% results.time3 = time for hessian or information matrix calculation
% results.time4 = time for optimization
% results.time = total time taken
% results.lndet = a matrix containing log-determinant information
% (for use in later function calls to save time)
% --------------------------------------------------
% NOTES: if you use lflag = 1 or 2, info.rmin will be set = -1
% info.rmax will be set = 1
% For number of spatial units < 500 you should use lflag = 0 to get exact results
% ---------------------------------------------------
%
% written by: J.Paul Elhorst 11/2004
% University of Groningen
% Department of Economics
% 9700AV Groningen
% the Netherlands
% j.p.elhorst@eco.rug.nl
%
% REFERENCES:
% "Specification and Estimation of Spatial Panel Data Models",
% International Regional Science Review, Vol. 26, pp. 244-268.
% Formulas for information matrix are not in this paper, I derived them
% later
% This function is based on James. P LeSage's function SAR
time1 = 0;
time2 = 0;
time3 = 0;
time4 = 0;
timet = clock; % start the clock for overall timing
% if we have no options, invoke defaults
if nargin == 4
info.lflag = 1;
info.model=0;
fprintf(1,'default: pooled model without fixed effects \n');
end;
fields = fieldnames(info);
nf = length(fields);
if nf > 0
for i=1:nf
if strcmp(fields{i},'model') model = info.model;
end
end
end
if model==0
results.meth='sar';
elseif model==1
results.meth='sarsfe';
elseif model==2
results.meth='sartfe';
elseif model==3
results.meth='sarstfe';
else
error('sar_panel: wrong input number of info.model');
end
% check size of user inputs for comformability
[nobs nvar] = size(x);
[N Ncol] = size(W);
if N ~= Ncol
error('sar: wrong size weight matrix W');
elseif N ~= nobs/T
error('sar: wrong size weight matrix W or matrix x');
end;
[nchk junk] = size(y);
if nchk ~= nobs
error('sar: wrong size vector y or matrix x');
end;
% parse input options
[rmin,rmax,convg,maxit,detval,ldetflag,eflag,order,miter,options] = sar_parse(info); % function of LeSage
% compute eigenvalues or limits
[rmin,rmax,time2] = sar_eigs(eflag,W,rmin,rmax,N); % function of LeSage
% do log-det calculations
[detval,time1] = sar_lndet(ldetflag,W,rmin,rmax,detval,order,miter); % function of LeSage
for t=1:T
t1=1+(t-1)*N;t2=t*N;
Wy([t1:t2],1)= sparse(W)*y([t1:t2],1);
end
% demeaning of the y and x variables, depending on (info.)model
if (model==1 | model==3);
meanny=zeros(N,1);
meannwy=zeros(N,1);
meannx=zeros(N,nvar);
for i=1:N
ym=zeros(T,1);
wym=zeros(T,1);
xm=zeros(T,nvar);
for t=1:T
ym(t)=y(i+(t-1)*N,1);
wym(t)=Wy(i+(t-1)*N,1);
xm(t,:)=x(i+(t-1)*N,:);
end
meanny(i)=mean(ym);
meannwy(i)=mean(wym);
meannx(i,:)=mean(xm);
end
clear ym wym xm;
end % if statement
if ( model==2 | model==3)
meanty=zeros(T,1);
meantwy=zeros(T,1);
meantx=zeros(T,nvar);
for i=1:T
t1=1+(i-1)*N;t2=i*N;
ym=y([t1:t2],1);
wym=Wy([t1:t2],1);
xm=x([t1:t2],:);
meanty(i)=mean(ym);
meantwy(i)=mean(wym);
meantx(i,:)=mean(xm);
end
clear ym wym xm;
end % if statement
en=ones(T,1);
et=ones(N,1);
ent=ones(nobs,1);
if model==1;
ywith=y-kron(en,meanny);
wywith=Wy-kron(en,meannwy);
xwith=x-kron(en,meannx);
elseif model==2
ywith=y-kron(et,meanty);
wywith=Wy-kron(et,meantwy);
xwith=x-kron(et,meantx);
elseif model==3
ywith=y-kron(en,meanny)-kron(et,meanty)+kron(ent,mean(y));
wywith=Wy-kron(en,meannwy)-kron(et,meantwy)+kron(ent,mean(Wy));
xwith=x-kron(en,meannx)-kron(et,meantx)+kron(ent,mean(x));
else
ywith=y;
wywith=Wy;
xwith=x;
end % if statement
t0 = clock;
AI = xwith'*xwith;
b0 = AI\(xwith'*ywith);
bd = AI\(xwith'*wywith);
e0 = ywith - xwith*b0;
ed = wywith - xwith*bd;
epe0 = e0'*e0;
eped = ed'*ed;
epe0d = ed'*e0;
% step 1) do regressions
% step 2) maximize concentrated likelihood function;
options = optimset('fminbnd');
[p,liktmp,exitflag,output] = fminbnd('f_sarpanel',rmin,rmax,options,detval,epe0,eped,epe0d,N,T);
time4 = etime(clock,t0);
if exitflag == 0
fprintf(1,'sar: convergence not obtained in %4d iterations \n',output.iterations);
end;
results.iter = output.iterations;
% step 3) find b,sige maximum likelihood estimates
results.beta = b0 - p*bd;
results.rho = p;
bhat = results.beta;
results.sige = (1/nobs)*(e0-p*ed)'*(e0-p*ed);
sige = results.sige;
if model==1
results.sfe=meanny-meannwy*results.rho-meannx*results.beta; % including intercept
xhat=x*results.beta+kron(en,results.sfe);
tnvar=nvar+1+N;
elseif model==2
results.tfe=meanty-meantwy*results.rho-meantx*results.beta; % including intercept
xhat=x*results.beta+kron(et,results.tfe);
tnvar=nvar+1+T;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -