📄 fourier.cpp
字号:
// Fourier.cpp: implementation of the Fourier class.
//
//////////////////////////////////////////////////////////////////////
#include "stdafx.h"
#include "Fourier.h"
#include <math.h>
#ifdef _DEBUG
#undef THIS_FILE
static char THIS_FILE[]=__FILE__;
#define new DEBUG_NEW
#endif
/*
* fft.cpp
*
* loic fonteneau 15-feb-2001
* Perform discrete FFT
*
* Original code : Don Cross <dcross@intersrv.com>
* http://www.intersrv.com/~dcross/fft.html
*
*/
#ifndef NULL
#define NULL '\0'
#endif
//////////////////////////////////////////////////////////////////////////////////////
// do the fft for double numbers
//////////////////////////////////////////////////////////////////////////////////////
void fft_double (unsigned int p_nSamples, bool p_bInverseTransform, double *p_lpRealIn, double *p_lpImagIn, double *p_lpRealOut, double *p_lpImagOut)
{
if(!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return;
unsigned int NumBits;
unsigned int i, j, k, n;
unsigned int BlockSize, BlockEnd;
double angle_numerator = 2.0 * PI;
double tr, ti;
if( !IsPowerOfTwo(p_nSamples) )
{
return;
}
if( p_bInverseTransform ) angle_numerator = -angle_numerator;
NumBits = NumberOfBitsNeeded ( p_nSamples );
for( i=0; i < p_nSamples; i++ )
{
j = ReverseBits ( i, NumBits );
p_lpRealOut[j] = p_lpRealIn[i];
p_lpImagOut[j] = (p_lpImagIn == NULL) ? 0.0 : p_lpImagIn[i];
}
BlockEnd = 1;
for( BlockSize = 2; BlockSize <= p_nSamples; BlockSize <<= 1 )
{
double delta_angle = angle_numerator / (double)BlockSize;
double sm2 = sin ( -2 * delta_angle );
double sm1 = sin ( -delta_angle );
double cm2 = cos ( -2 * delta_angle );
double cm1 = cos ( -delta_angle );
double w = 2 * cm1;
double ar[3], ai[3];
for( i=0; i < p_nSamples; i += BlockSize )
{
ar[2] = cm2;
ar[1] = cm1;
ai[2] = sm2;
ai[1] = sm1;
for ( j=i, n=0; n < BlockEnd; j++, n++ )
{
ar[0] = w*ar[1] - ar[2];
ar[2] = ar[1];
ar[1] = ar[0];
ai[0] = w*ai[1] - ai[2];
ai[2] = ai[1];
ai[1] = ai[0];
k = j + BlockEnd;
tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k];
ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k];
p_lpRealOut[k] = p_lpRealOut[j] - tr;
p_lpImagOut[k] = p_lpImagOut[j] - ti;
p_lpRealOut[j] += tr;
p_lpImagOut[j] += ti;
}
}
BlockEnd = BlockSize;
}
if( p_bInverseTransform )
{
double denom = (double)p_nSamples;
for ( i=0; i < p_nSamples; i++ )
{
p_lpRealOut[i] /= denom;
p_lpImagOut[i] /= denom;
}
}
}
//////////////////////////////////////////////////////////////////////////////////////
// check is a number is a power of 2
//////////////////////////////////////////////////////////////////////////////////////
bool IsPowerOfTwo( unsigned int p_nX )
{
if( p_nX < 2 ) return false;
if( p_nX & (p_nX-1) ) return false;
return true;
}
//////////////////////////////////////////////////////////////////////////////////////
// return needed bits for fft
//////////////////////////////////////////////////////////////////////////////////////
unsigned int NumberOfBitsNeeded( unsigned int p_nSamples )
{
int i;
if( p_nSamples < 2 )
{
return 0;
}
for ( i=0; ; i++ )
{
if( p_nSamples & (1 << i) ) return i;
}
}
//////////////////////////////////////////////////////////////////////////////////////
// ?
//////////////////////////////////////////////////////////////////////////////////////
unsigned int ReverseBits(unsigned int p_nIndex, unsigned int p_nBits)
{
unsigned int i, rev;
for(i=rev=0; i < p_nBits; i++)
{
rev = (rev << 1) | (p_nIndex & 1);
p_nIndex >>= 1;
}
return rev;
}
//////////////////////////////////////////////////////////////////////////////////////
// return a frequency from the basefreq and num of samples
//////////////////////////////////////////////////////////////////////////////////////
double Index_to_frequency(unsigned int p_nBaseFreq, unsigned int p_nSamples, unsigned int p_nIndex)
{
if(p_nIndex >= p_nSamples)
{
return 0.0;
}
else if(p_nIndex <= p_nSamples/2)
{
return ( (double)p_nIndex / (double)p_nSamples * p_nBaseFreq );
}
else
{
return ( -(double)(p_nSamples-p_nIndex) / (double)p_nSamples * p_nBaseFreq );
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -