📄 bitvec.c
字号:
/*** 2008 February 16**** The author disclaims copyright to this source code. In place of** a legal notice, here is a blessing:**** May you do good and not evil.** May you find forgiveness for yourself and forgive others.** May you share freely, never taking more than you give.***************************************************************************** This file implements an object that represents a fixed-length** bitmap. Bits are numbered starting with 1.**** A bitmap is used to record which pages of a database file have been** journalled during a transaction, or which pages have the "dont-write"** property. Usually only a few pages are meet either condition.** So the bitmap is usually sparse and has low cardinality.** But sometimes (for example when during a DROP of a large table) most** or all of the pages in a database can get journalled. In those cases, ** the bitmap becomes dense with high cardinality. The algorithm needs ** to handle both cases well.**** The size of the bitmap is fixed when the object is created.**** All bits are clear when the bitmap is created. Individual bits** may be set or cleared one at a time.**** Test operations are about 100 times more common that set operations.** Clear operations are exceedingly rare. There are usually between** 5 and 500 set operations per Bitvec object, though the number of sets can** sometimes grow into tens of thousands or larger. The size of the** Bitvec object is the number of pages in the database file at the** start of a transaction, and is thus usually less than a few thousand,** but can be as large as 2 billion for a really big database.**** @(#) $Id: bitvec.c,v 1.9 2008/11/19 18:30:35 shane Exp $*/#include "sqliteInt.h"/* Size of the Bitvec structure in bytes. */#define BITVEC_SZ 512/* Round the union size down to the nearest pointer boundary, since that's how ** it will be aligned within the Bitvec struct. */#define BITVEC_USIZE (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))/* Type of the array "element" for the bitmap representation. ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE. ** Setting this to the "natural word" size of your CPU may improve** performance. */#define BITVEC_TELEM u8/* Size, in bits, of the bitmap element. */#define BITVEC_SZELEM 8/* Number of elements in a bitmap array. */#define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM))/* Number of bits in the bitmap array. */#define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM)/* Number of u32 values in hash table. */#define BITVEC_NINT (BITVEC_USIZE/sizeof(u32))/* Maximum number of entries in hash table before ** sub-dividing and re-hashing. */#define BITVEC_MXHASH (BITVEC_NINT/2)/* Hashing function for the aHash representation.** Empirical testing showed that the *37 multiplier ** (an arbitrary prime)in the hash function provided ** no fewer collisions than the no-op *1. */#define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT)#define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *))/*** A bitmap is an instance of the following structure.**** This bitmap records the existance of zero or more bits** with values between 1 and iSize, inclusive.**** There are three possible representations of the bitmap.** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight** bitmap. The least significant bit is bit 1.**** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is** a hash table that will hold up to BITVEC_MXHASH distinct values.**** Otherwise, the value i is redirected into one of BITVEC_NPTR** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap** handles up to iDivisor separate values of i. apSub[0] holds** values between 1 and iDivisor. apSub[1] holds values between** iDivisor+1 and 2*iDivisor. apSub[N] holds values between** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized** to hold deal with values between 1 and iDivisor.*/struct Bitvec { u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */ u32 nSet; /* Number of bits that are set - only valid for aHash element */ /* Max nSet is BITVEC_NINT. For BITVEC_SZ of 512, this would be 125. */ u32 iDivisor; /* Number of bits handled by each apSub[] entry. */ /* Should >=0 for apSub element. */ /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */ /* For a BITVEC_SZ of 512, this would be 34,359,739. */ union { BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */ u32 aHash[BITVEC_NINT]; /* Hash table representation */ Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */ } u;};/*** Create a new bitmap object able to handle bits between 0 and iSize,** inclusive. Return a pointer to the new object. Return NULL if ** malloc fails.*/Bitvec *sqlite3BitvecCreate(u32 iSize){ Bitvec *p; assert( sizeof(*p)==BITVEC_SZ ); p = sqlite3MallocZero( sizeof(*p) ); if( p ){ p->iSize = iSize; } return p;}/*** Check to see if the i-th bit is set. Return true or false.** If p is NULL (if the bitmap has not been created) or if** i is out of range, then return false.*/int sqlite3BitvecTest(Bitvec *p, u32 i){ if( p==0 ) return 0; if( i>p->iSize || i==0 ) return 0; i--; while( p->iDivisor ){ u32 bin = i/p->iDivisor; i = i%p->iDivisor; p = p->u.apSub[bin]; if (!p) { return 0; } } if( p->iSize<=BITVEC_NBIT ){ return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0; } else{ u32 h = BITVEC_HASH(i++); while( p->u.aHash[h] ){ if( p->u.aHash[h]==i ) return 1; h++; if( h>=BITVEC_NINT ) h = 0; } return 0; }}/*** Set the i-th bit. Return 0 on success and an error code if** anything goes wrong.**** This routine might cause sub-bitmaps to be allocated. Failing** to get the memory needed to hold the sub-bitmap is the only** that can go wrong with an insert, assuming p and i are valid.**** The calling function must ensure that p is a valid Bitvec object** and that the value for "i" is within range of the Bitvec object.** Otherwise the behavior is undefined.*/int sqlite3BitvecSet(Bitvec *p, u32 i){ u32 h; assert( p!=0 ); assert( i>0 ); assert( i<=p->iSize ); i--; while((p->iSize > BITVEC_NBIT) && p->iDivisor) { u32 bin = i/p->iDivisor; i = i%p->iDivisor; if( p->u.apSub[bin]==0 ){ sqlite3BeginBenignMalloc(); p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor ); sqlite3EndBenignMalloc(); if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM; } p = p->u.apSub[bin]; } if( p->iSize<=BITVEC_NBIT ){ p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1)); return SQLITE_OK; } h = BITVEC_HASH(i++); /* if there wasn't a hash collision, and this doesn't */ /* completely fill the hash, then just add it without */ /* worring about sub-dividing and re-hashing. */ if( !p->u.aHash[h] ){ if (p->nSet<(BITVEC_NINT-1)) { goto bitvec_set_end; } else { goto bitvec_set_rehash; } } /* there was a collision, check to see if it's already */ /* in hash, if not, try to find a spot for it */ do { if( p->u.aHash[h]==i ) return SQLITE_OK; h++; if( h>=BITVEC_NINT ) h = 0; } while( p->u.aHash[h] ); /* we didn't find it in the hash. h points to the first */ /* available free spot. check to see if this is going to */ /* make our hash too "full". */bitvec_set_rehash: if( p->nSet>=BITVEC_MXHASH ){ unsigned int j; int rc; u32 aiValues[BITVEC_NINT]; memcpy(aiValues, p->u.aHash, sizeof(aiValues)); memset(p->u.apSub, 0, sizeof(aiValues)); p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR; rc = sqlite3BitvecSet(p, i); for(j=0; j<BITVEC_NINT; j++){ if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]); } return rc; }bitvec_set_end: p->nSet++; p->u.aHash[h] = i; return SQLITE_OK;}/*** Clear the i-th bit.*/void sqlite3BitvecClear(Bitvec *p, u32 i){ assert( p!=0 ); assert( i>0 ); i--; while( p->iDivisor ){ u32 bin = i/p->iDivisor; i = i%p->iDivisor; p = p->u.apSub[bin]; if (!p) { return; } } if( p->iSize<=BITVEC_NBIT ){ p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1))); }else{ unsigned int j; u32 aiValues[BITVEC_NINT]; memcpy(aiValues, p->u.aHash, sizeof(aiValues)); memset(p->u.aHash, 0, sizeof(aiValues)); p->nSet = 0; for(j=0; j<BITVEC_NINT; j++){ if( aiValues[j] && aiValues[j]!=(i+1) ){ u32 h = BITVEC_HASH(aiValues[j]-1); p->nSet++; while( p->u.aHash[h] ){ h++; if( h>=BITVEC_NINT ) h = 0; } p->u.aHash[h] = aiValues[j]; } } }}/*** Destroy a bitmap object. Reclaim all memory used.*/void sqlite3BitvecDestroy(Bitvec *p){ if( p==0 ) return; if( p->iDivisor ){ unsigned int i; for(i=0; i<BITVEC_NPTR; i++){ sqlite3BitvecDestroy(p->u.apSub[i]); } } sqlite3_free(p);}#ifndef SQLITE_OMIT_BUILTIN_TEST/*** Let V[] be an array of unsigned characters sufficient to hold** up to N bits. Let I be an integer between 0 and N. 0<=I<N.** Then the following macros can be used to set, clear, or test** individual bits within V.*/#define SETBIT(V,I) V[I>>3] |= (1<<(I&7))#define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7))#define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0/*** This routine runs an extensive test of the Bitvec code.**** The input is an array of integers that acts as a program** to test the Bitvec. The integers are opcodes followed** by 0, 1, or 3 operands, depending on the opcode. Another** opcode follows immediately after the last operand.**** There are 6 opcodes numbered from 0 through 5. 0 is the** "halt" opcode and causes the test to end.**** 0 Halt and return the number of errors** 1 N S X Set N bits beginning with S and incrementing by X** 2 N S X Clear N bits beginning with S and incrementing by X** 3 N Set N randomly chosen bits** 4 N Clear N randomly chosen bits** 5 N S X Set N bits from S increment X in array only, not in bitvec**** The opcodes 1 through 4 perform set and clear operations are performed** on both a Bitvec object and on a linear array of bits obtained from malloc.** Opcode 5 works on the linear array only, not on the Bitvec.** Opcode 5 is used to deliberately induce a fault in order to** confirm that error detection works.**** At the conclusion of the test the linear array is compared** against the Bitvec object. If there are any differences,** an error is returned. If they are the same, zero is returned.**** If a memory allocation error occurs, return -1.*/int sqlite3BitvecBuiltinTest(int sz, int *aOp){ Bitvec *pBitvec = 0; unsigned char *pV = 0; int rc = -1; int i, nx, pc, op; /* Allocate the Bitvec to be tested and a linear array of ** bits to act as the reference */ pBitvec = sqlite3BitvecCreate( sz ); pV = sqlite3_malloc( (sz+7)/8 + 1 ); if( pBitvec==0 || pV==0 ) goto bitvec_end; memset(pV, 0, (sz+7)/8 + 1); /* Run the program */ pc = 0; while( (op = aOp[pc])!=0 ){ switch( op ){ case 1: case 2: case 5: { nx = 4; i = aOp[pc+2] - 1; aOp[pc+2] += aOp[pc+3]; break; } case 3: case 4: default: { nx = 2; sqlite3_randomness(sizeof(i), &i); break; } } if( (--aOp[pc+1]) > 0 ) nx = 0; pc += nx; i = (i & 0x7fffffff)%sz; if( (op & 1)!=0 ){ SETBIT(pV, (i+1)); if( op!=5 ){ if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end; } }else{ CLEARBIT(pV, (i+1)); sqlite3BitvecClear(pBitvec, i+1); } } /* Test to make sure the linear array exactly matches the ** Bitvec object. Start with the assumption that they do ** match (rc==0). Change rc to non-zero if a discrepancy ** is found. */ rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1) + sqlite3BitvecTest(pBitvec, 0); for(i=1; i<=sz; i++){ if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){ rc = i; break; } } /* Free allocated structure */bitvec_end: sqlite3_free(pV); sqlite3BitvecDestroy(pBitvec); return rc;}#endif /* SQLITE_OMIT_BUILTIN_TEST */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -