📄 main.asv
字号:
% *************************************************************************
% TWO DIMENSIONAL ELEMENT FREE GALERKIN CODE
% Nguyen Vinh Phu
% LTDS, ENISE, Juillet 2006
% *************************************************************************
% Description:
% This is a simple Matlab code of the EFG method which is the most familiar
% meshless methods using MLS approximation and Galerkin procedure to derive
% the discrete equations.
% Domain of influence can be : (1) circle and (2) rectangle
% Weight function : cubic or quartic spline function
% Nodes can be uniformly distributed nodes or randomly distributed
% (in the latter case, this is read from a finite element mesh file)
% Numerical integration is done with background mesh
% Essential boundary condition is imposed using Lagrange multipliers or
% penalty method.
% In case of Lagrange multipliers, but use the Dirac delta function to
% approximate lamda, we obtain the boundary point collocation method
% *************************************************************************
% Problem: the Timoshenko beam problem as given in EFG paper
% +++++++++++++++++++++++++++++++++++++
% PROBLEM INPUT DATA
% +++++++++++++++++++++++++++++++++++++
clear all
clc
state = 0;
tic; % help us to see the time required for each step
% Dimension of the domain (it is simply a rectangular region L x W)
L = 48 ;
D = 12 ;
% Material properties
E = 30e6 ;
nu = 0.3 ;
% Chargement
P = 1000 ;
% Inputs special to meshless methods, domain of influence
shape = 'circle' ; % shape of domain of influence
dmax = 1.5 ; % radius = dmax * nodal spacing
form = 'cubic_spline' ; % using cubic spline weight function
% Choose method to impose essential boundary condition
% disp_bc_method = 1 : Lagrange multiplier method
% disp_bc_method = 2 : Penalty method
disp_bc_method = 2 ;
% If Lagrange multiplier is used, choose approximation to be used for lamda
if disp_bc_method == 1
%la_approx = 100 ; % using finite element approximation
la_approx = 200 ; % using point collocation method
end
% If penalty function is used, then choose "smart" penalty number :-)
if disp_bc_method == 2
alpha = 1e5 ; % penalty number
end
% +++++++++++++++++++++++++++++++++++++
% NODE GENERATION
% +++++++++++++++++++++++++++++++++++++
% Steps:
% 1. Node coordinates
% 2. Nodes' weight function including : shape (circle or rectangle), size
% and form (quartic spline or the other)
disp([num2str(toc),' NODE GENERATION'])
% Node density defined by number of nodes along two directions
nnx = 11 ;
nny = 7 ;
% node generation, node is of size (nnode x 2)
node = square_node_array([0 -D/2],[L -D/2],[L D/2],[0 D/2],nnx,nny);
numnode = size(node,1);
% Boundary nodes
% 1. Displacement condition on the left edge with x = 0
% 2. Traction condition on the right edge with x = L
disp_nodes = find(node(:,1)==0) ;
trac_nodes = find(node(:,1)==L) ;
num_disp_nodes = length(disp_nodes);
num_trac_nodes = length(trac_nodes);
ubar = zeros(2*num_disp_nodes,1); % initialize of vector u bar
f = zeros(2*numnode,1); % nodal force vector
% +++++++++++++++++++++++++++++++++++++
% GAUSS POINTS
% +++++++++++++++++++++++++++++++++++++
% Steps:
% 1. Mesh generation using available meshing algorithm of FEM
% 2. Using isoparametric mapping to transform Gauss points defined in each
% element (background element) to global coordinates
disp([num2str(toc),' BUILD GAUSS POINT FOR DOMAIN '])
% Meshing, Q4 elements
inc_u = 1;
inc_v = nnx;
node_pattern = [ 1 2 nnx+2 nnx+1 ];
element = make_elem(node_pattern,nnx-1,nny-1,inc_u,inc_v);
% Building Gauss points
[w,q]=quadrature(4, 'GAUSS', 2 ); % 4x4 Gaussian quadrature for each cell
W = [];
Q = [];
J = [];
for e = 1 : size(element,1) % element loop
sctr=element(e,:); % element scatter vector
for i = 1:size(w,1) % quadrature loop
pt=q(i,:); % quadrature point
wt=w(i); % quadrature weight
[N,dNdxi]=lagrange_basis('Q4',pt); % Q4 shape functions
J0=node(sctr,:)'*dNdxi; % element Jacobian matrix
Q = [Q; N' * node(sctr,:)]; % global Gauss point
W = [W; wt]; % global Gauss point
J = [J; det(J0)];
end
end
clear w,q ;
% +++++++++++++++++++++++++++++++++++++
% PLOT NODES,BACKGROUND MESH, GPOINTS
% +++++++++++++++++++++++++++++++++++++
disp([num2str(toc),' PLOT NODES AND GAUSS POINTS'])
figure
hold on
cntr = plot([0,L,L,0,0],[-D/2,-D/2,D/2,D/2,-D/2]);
set(cntr,'LineWidth',3)
h = plot(node(:,1),node(:,2),'bo');
set(h,'MarkerSize',10.5);
AXIS([-1 L -D D])
axis off
figure
hold on
cntr = plot([0,L,L,0,0],[-D/2,-D/2,D/2,D/2,-D/2]);
set(cntr,'LineWidth',3)
plot_mesh(node,element,'Q4','--');
%plot(Q(:,1),Q(:,2),'r*');
axis auto
axis off
% +++++++++++++++++++++++++++++++++++++
% DOMAIN ASSEMBLY
% +++++++++++++++++++++++++++++++++++++
disp([num2str(toc),' DOMAIN ASSEMBLY'])
% Initialisation
K = sparse(2*numnode,2*numnode);
di = dmax * (L/(nnx-1));
% Plane stress matrix
C = (E/(1-nu*nu)) * [1 nu 0 ;
nu 1 0
0 0 0.5*(1-nu)] ;
% ----------------------------------------------
% Loop on Gauss points
% ----------------------------------------------
for igp = 1 : size(W,1)
pt = Q(igp,:); % quadrature point
wt = W(igp); % quadrature weight
% ----------------------------------------------
% find nodes in neighbouring of Gauss point pt
% ----------------------------------------------
[index] = define_support(node,pt,di);
% --------------------------------------
% compute B matrix, K matrix
% --------------------------------------
% Loop on nodes within the support, compute dPhi of each node
% Then get the B matrix
% Finally assemble to the K matrix
B = zeros(3,2*size(index,2)) ;
en = zeros(1,2*size(index,2));
[phi,dphidx,dphidy] = MLS_ShapeFunction(pt,index,node,di,form);
for m = 1 : size(index,2)
B(1:3,2*m-1:2*m) = [dphidx(m) 0 ;
0 dphidy(m);
dphidy(m) dphidx(m)];
en(2*m-1) = 2*index(m)-1;
en(2*m ) = 2*index(m) ;
end
K(en,en) = K(en,en) + B'*C*B * W(igp)*J(igp) ;
end
% +++++++++++++++++++++++++++++++++++++
% INTEGRATE ON TRACTION BOUNDARY
% +++++++++++++++++++++++++++++++++++++
% Steps:
% 1. Build up Gauss points on the boundary, 4 GPs are used
% 2. Loop on these GPs to form the f vector
disp([num2str(toc),' INTEGRATION ON TRACTION BOUNDARY'])
% --------------------------------------
% Generation of Gauss points
% --------------------------------------
% 4 point quadrature for each "1D element"
[W1,Q1]=quadrature(4, 'GAUSS', 1 );
Wt = [];
Qt = [];
Jt = [];
for i = 1 : (num_trac_nodes - 1)
sctr = [trac_nodes(i) trac_nodes(i+1)];
for q = 1:size(W1,1)
pt = Q1(q,:);
wt = W1(q);
[N,dNdxi] = lagrange_basis('L2',pt);
J0=dNdxi'*node(sctr,:);
Qt = [Qt; N' * node(sctr,:)];
Wt = [Wt; wt];
Jt = [Jt; norm(J0)];
end % of quadrature loop
end
% --------------------------------------
% Form the nodal force vector f
% --------------------------------------
I = (1/12)*D^3;
f = zeros(2*numnode,1);
for igp = 1 : size(Wt,1)
pt = Qt(igp,:); % quadrature point
wt = Wt(igp); % quadrature weight
[index] = define_support(node,pt,di);
en = zeros(1,2*size(index,2));
force = zeros(1,2*size(index,2));
[phi,dphidx,dphidy] = MLS_ShapeFunction(pt,index,node,di,form);
tx = 0.0 ;
ty = -(P/(2*I))*((D*D)/4-pt(1,2)^2);
for j = 1 : size(index,2)
en(2*j-1) = 2*index(j)-1;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -