⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fat16.c

📁 一个SD卡和FAT16读写源代码
💻 C
📖 第 1 页 / 共 5 页
字号:
    }    return buffer_len - buffer_left;#else    return -1;#endif}/** * \ingroup fat16_file * Repositions the read/write file offset. * * Changes the file offset where the next call to fat16_read_file() * or fat16_write_file() starts reading/writing. * * If the new offset is beyond the end of the file, fat16_resize_file() * is implicitly called, i.e. the file is expanded. * * The new offset can be given in different ways determined by * the \c whence parameter: * - \b FAT16_SEEK_SET: \c *offset is relative to the beginning of the file. * - \b FAT16_SEEK_CUR: \c *offset is relative to the current file position. * - \b FAT16_SEEK_END: \c *offset is relative to the end of the file. * * The resulting absolute offset is written to the location the \c offset * parameter points to. *  * \param[in] fd The file decriptor of the file on which to seek. * \param[in,out] offset A pointer to the new offset, as affected by the \c whence *                   parameter. The function writes the new absolute offset *                   to this location before it returns. * \param[in] whence Affects the way \c offset is interpreted, see above. * \returns 0 on failure, 1 on success. */uint8_t fat16_seek_file(struct fat16_file_struct* fd, int32_t* offset, uint8_t whence){    uint32_t new_pos;
	
	if(!fd || !offset)        return 0;    new_pos = fd->pos;    switch(whence)    {        case FAT16_SEEK_SET:            new_pos = *offset;            break;        case FAT16_SEEK_CUR:            new_pos += *offset;            break;        case FAT16_SEEK_END:            new_pos = fd->dir_entry.file_size + *offset;            break;        default:            return 0;    }    if(new_pos > fd->dir_entry.file_size && !fat16_resize_file(fd, new_pos))        return 0;    fd->pos = new_pos;    fd->pos_cluster = 0;    *offset = new_pos;    return 1;}/** * \ingroup fat16_file * Resizes a file to have a specific size. * * Enlarges or shrinks the file pointed to by the file descriptor to have * exactly the specified size. * * If the file is truncated, all bytes having an equal or larger offset * than the given size are lost. If the file is expanded, the additional * bytes are allocated. * * \note Please be aware that this function just allocates or deallocates disk * space, it does not explicitely clear it. To avoid data leakage, this * must be done manually. * * \param[in] fd The file decriptor of the file which to resize. * \param[in] size The new size of the file. * \returns 0 on failure, 1 on success. */uint8_t fat16_resize_file(struct fat16_file_struct* fd, uint32_t size){#if FAT16_WRITE_SUPPORT
    uint16_t cluster_num;    uint16_t cluster_size;    uint32_t size_new;
	uint16_t cluster_num_next;
	uint16_t cluster_count;
	uint16_t cluster_new_chain;

    if(!fd)        return 0;    cluster_num = fd->dir_entry.cluster;    cluster_size = fd->fs->header.cluster_size;    size_new = size;    do    {        if(cluster_num == 0 && size_new == 0)            /* the file stays empty */            break;        /* seek to the next cluster as long as we need the space */        while(size_new > cluster_size)        {            /* get next cluster of file */            cluster_num_next = fat16_get_next_cluster(fd->fs, cluster_num);            if(cluster_num_next)            {                cluster_num = cluster_num_next;                size_new -= cluster_size;            }            else            {                break;            }        }        if(size_new > cluster_size || cluster_num == 0)        {            /* Allocate new cluster chain and append             * it to the existing one, if available.             */            cluster_count = size_new / cluster_size;            if((uint32_t) cluster_count * cluster_size < size_new)                ++cluster_count;            cluster_new_chain = fat16_append_clusters(fd->fs, cluster_num, cluster_count);            if(!cluster_new_chain)                return 0;            if(!cluster_num)            {                cluster_num = cluster_new_chain;                fd->dir_entry.cluster = cluster_num;            }        }        /* write new directory entry */        fd->dir_entry.file_size = size;        if(size == 0)            fd->dir_entry.cluster = 0;        if(!fat16_write_dir_entry(fd->fs, &fd->dir_entry))            return 0;        if(size == 0)        {            /* free all clusters of file */            fat16_free_clusters(fd->fs, cluster_num);        }        else if(size_new <= cluster_size)        {            /* free all clusters no longer needed */            fat16_terminate_clusters(fd->fs, cluster_num);        }    } while(0);    /* correct file position */    if(size < fd->pos)    {        fd->pos = size;        fd->pos_cluster = 0;    }    return 1;#else    return 0;#endif}/** * \ingroup fat16_dir * Opens a directory. * * \param[in] fs The filesystem on which the directory to open resides. * \param[in] dir_entry The directory entry which stands for the directory to open. * \returns An opaque directory descriptor on success, 0 on failure. * \see fat16_close_dir */struct fat16_dir_struct* fat16_open_dir(struct fat16_fs_struct* fs, const struct fat16_dir_entry_struct* dir_entry){
    struct fat16_dir_struct* dd;    uint8_t i;
    if(!fs || !dir_entry || !(dir_entry->attributes & FAT16_ATTRIB_DIR))        return 0;#if USE_DYNAMIC_MEMORY    dd = malloc(sizeof(*dd));    i=0;
	if(!dd)        return 0;#else    dd = fat16_dir_handlers;    for(i = 0; i < FAT16_DIR_COUNT; ++i)    {        if(!dd->fs)            break;        ++dd;    }    if(i >= FAT16_DIR_COUNT)        return 0;#endif        memcpy(&dd->dir_entry, dir_entry, sizeof(*dir_entry));    dd->fs = fs;    dd->entry_next = 0;    return dd;}/** * \ingroup fat16_dir * Closes a directory descriptor. * * This function destroys a directory descriptor which was * previously obtained by calling fat16_open_dir(). When this * function returns, the given descriptor will be invalid. * * \param[in] dd The directory descriptor to close. * \see fat16_open_dir */void fat16_close_dir(struct fat16_dir_struct* dd){    if(dd)#if USE_DYNAMIC_MEMORY        free(dd);#else        dd->fs = 0;#endif}/** * \ingroup fat16_dir * Reads the next directory entry contained within a parent directory. * * \param[in] dd The descriptor of the parent directory from which to read the entry. * \param[out] dir_entry Pointer to a buffer into which to write the directory entry information. * \returns 0 on failure, 1 on success. * \see fat16_reset_dir */uint8_t fat16_read_dir(struct fat16_dir_struct* dd, struct fat16_dir_entry_struct* dir_entry){    if(!dd || !dir_entry)        return 0;    if(dd->dir_entry.cluster == 0)    {        /* read entry from root directory */        if(fat16_read_root_dir_entry(dd->fs, dd->entry_next, dir_entry))        {            ++dd->entry_next;            return 1;        }    }    else    {        /* read entry from a subdirectory */        if(fat16_read_sub_dir_entry(dd->fs, dd->entry_next, &dd->dir_entry, dir_entry))        {            ++dd->entry_next;            return 1;        }    }    /* restart reading */    dd->entry_next = 0;    return 0;}/** * \ingroup fat16_dir * Resets a directory handle. * * Resets the directory handle such that reading restarts * with the first directory entry. * * \param[in] dd The directory handle to reset. * \returns 0 on failure, 1 on success. * \see fat16_read_dir */uint8_t fat16_reset_dir(struct fat16_dir_struct* dd){    if(!dd)        return 0;    dd->entry_next = 0;    return 1;}/** * \ingroup fat16_fs * Searches for space where to store a directory entry. * * \param[in] fs The filesystem on which to operate. * \param[in] dir_entry The directory entry for which to search space. * \returns 0 on failure, a device offset on success. */uint32_t fat16_find_offset_for_dir_entry(const struct fat16_fs_struct* fs, const struct fat16_dir_struct* parent, const struct fat16_dir_entry_struct* dir_entry){#if FAT16_WRITE_SUPPORT

    uint8_t free_dir_entries_needed;    uint8_t free_dir_entries_found;    uint16_t cluster_num;    uint32_t dir_entry_offset;    uint32_t offset;    uint32_t offset_to;
	uint16_t cluster_next;
	uint8_t first_char;
    if(!fs || !dir_entry)        return 0;    /* search for a place where to write the directory entry to disk */    free_dir_entries_needed = (strlen(dir_entry->long_name) + 12) / 13 + 1;    free_dir_entries_found = 0;    cluster_num = parent->dir_entry.cluster;    dir_entry_offset = 0;    offset = 0;    offset_to = 0;    if(cluster_num == 0)    {        /* we read/write from the root directory entry */        offset = fs->header.root_dir_offset;        offset_to = fs->header.cluster_zero_offset;        dir_entry_offset = offset;    }        while(1)    {        if(offset == offset_to)        {            if(cluster_num == 0)                /* We iterated through the whole root directory entry                 * and could not find enough space for the directory entry.                 */                return 0;            if(offset)            {                /* We reached a cluster boundary and have to                 * switch to the next cluster.                 */                cluster_next = fat16_get_next_cluster(fs, cluster_num);                if(!cluster_next)                {                    cluster_next = fat16_append_clusters(fs, cluster_num, 1);                    if(!cluster_next)                        return 0;                    /* we appended a new cluster and know it is free */                    dir_entry_offset = fs->header.cluster_zero_offset +                                       (uint32_t) (cluster_next - 2) * fs->header.cluster_size;                    /* clear cluster to avoid garbage directory entries */                    fat16_clear_cluster(fs, cluster_next);                    break;                }                cluster_num = cluster_next;            }            offset = fs->header.cluster_zero_offset +                     (uint32_t) (cluster_num - 2) * fs->header.cluster_size;            offset_to = offset + fs->header.cluster_size;            dir_entry_offset = offset;            free_dir_entries_found = 0;        }                /* read next lfn or 8.3 entry */                if(!fs->partition->device_read(offset, &first_char, sizeof(first_char)))            return 0;        /* check if we found a free directory entry */        if(first_char == FAT16_DIRENTRY_DELETED || !first_char)        {            /* check if we have the needed number of available entries */            ++free_dir_entries_found;            if(free_dir_entries_found >= free_dir_entries_needed)                break;            offset += 32;        }        else        {            offset += 32;            dir_entry_offset = offset;            free_dir_entries_found = 0;        }    }    return dir_entry_offset;#else    return 0;#endif}/** * \ingroup fat16_fs * Writes a directory entry to disk. * * \note The file name is not checked for invalid characters. * * \note The generation of the short 8.3 file name is quite * simple. The first eight characters are used for the filename. * The extension, if any, is made up of the first three characters * following the last dot within the long filename. If the * filename (without the extension) is longer than eight characters, * the lower byte of the cluster number replaces the last two * characters to avoid name clashes. In any other case, it is your * responsibility to avoid name clashes. * * \param[in] fs The filesystem on which to operate. * \param[in] dir_entry The directory entry to write. * \returns 0 on failure, 1 on success. */uint8_t fat16_write_dir_entry(const struct fat16_fs_struct* fs, struct fat16_dir_entry_struct* dir_entry){#if FAT16_WRITE_SUPPORT

    device_write_t device_write;    uint32_t offset;    char* name;    uint8_t name_len;    uint8_t lfn_entry_count;    uint8_t buffer[32];
	char* name_ext;
	uint8_t num;
    

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -