⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 multivariatedistribution.java

📁 一个自然语言处理的Java开源工具包。LingPipe目前已有很丰富的功能
💻 JAVA
字号:
/* * LingPipe v. 3.5 * Copyright (C) 2003-2008 Alias-i * * This program is licensed under the Alias-i Royalty Free License * Version 1 WITHOUT ANY WARRANTY, without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the Alias-i * Royalty Free License Version 1 for more details. * * You should have received a copy of the Alias-i Royalty Free License * Version 1 along with this program; if not, visit * http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt or contact * Alias-i, Inc. at 181 North 11th Street, Suite 401, Brooklyn, NY 11211, * +1 (718) 290-9170. */package com.aliasi.stats;/** * A <code>MultivariateDistribution</code> implements a discrete * distribution over a finite set of outcomes numbered consecutively * from zero.  The total number of outcomes is given by the abstract * method {@link #numDimensions()}.  The minimum outcome is zero and * the maximum outcome is the number of dimensions minus one. * Concrete subclasses must also implement the method {@link * #probability(long)}. *  * <P>Outcomes in multivariate distributions are labeled by strings. * The method {@link #label(long)} returns the label for an outcome. * The inverse method {@link #outcome(String)} maps labels to * outcomes.  The default implementation in this class provides labels * defined by converting the long integer outcomes to strings. * Subclasses may override these methods (together) to implement a * more meaningful notion of label. * * <P>Note that the multivariate distribution forms the basis of the * mulitnomial distribution.  The Bernoulli distribution is a special * case of the multivariate distribution with two outcomes. * * <P>For more information, see:  * <UL>  * <LI> Eric  W. Weisstein.  * <a href="http://mathworld.wolfram.com/MultivariateDistribution.html">Multivariate Distribution</a>. * From <i>MathWorld</i>--A Wolfram Web Resource.  * </UL> *  * @author Bob Carpenter * @version 2.0 * @since   LingPipe2.0 */public abstract class MultivariateDistribution     extends AbstractDiscreteDistribution {    /**     * Construct a multivariate distribution.     */    public MultivariateDistribution() {         /* do nothing */    }    /**     * Returns zero, the minimum outcome with non-zero probability for     * a multivariate distribution.     *     * @return Zero.     */    public long minOutcome() {        return 0l;    }    /**     * Returns the maximum outcome with non-zero probability for a     * multivariate distribution.  This method returns the number of     * dimensions as specified by {@link #numDimensions()} minus one.     *     * @return The maximum outcome with non-zero probability for this     * distribution.     */    public long maxOutcome() {        return numDimensions()-1;    }    /**     * Return the outcome for the specified label.  The default     * implementation is to return the result of applying the method     * {@link Long#parseLong(String)} to the specified label.  If the     * label is not a number, <code>-1</code> is returned.     *      * @param label Label whose outcome is returned.     * @return The outcome for the specified label.     */    public long outcome(String label) {        try {            long outcome = Long.parseLong(label);            if (outcomeOutOfRange(outcome))                 return -1l;            return outcome;        } catch (NumberFormatException e) {            return -1l;        }    }    /**     * Return the label for the specified outcome.  The default     * implementation in this class is to return the result of {@link     * Long#toString(long)} applied to the outcome.     *     * @param outcome Outcome whose label is returned.     * @return The label for the specified outcome.     * @throws IllegalArgumentException If the outcome index is out of range.     */    public String label(long outcome) {        checkOutcome(outcome);        return Long.toString(outcome);    }    /**     * Returns the probability of the outcome specified by label.  If     * there is no known outcome with the specified label, this method     * will return <code>0.0</code>.     *     * @param label Label of outcome.     * @return The probability of the outcome specified by label.     */    public double probability(String label) {        return probability(outcome(label));    }    /**     * Returns the log (base 2) probability of the outcome specified     * by label.  If there is no known outcome with the specified     * label, this method will return     * <code>Double.NEGATIVE_INFINITY</code>.     *     * @param label Label of outcome.     * @return The log probability of the outcome specified by label.     */    public double log2Probability(String label) {        return log2Probability(outcome(label));    }        /**     * Returns the number of dimensions of this multivariate distribution.     * Note that this must be a positive number.       *      * @return The number of dimensions for this distribution.     */    public abstract int numDimensions();    /**     * Return the probability of the specified outcome in     * this multivariate distribution.      *     * @param outcome Outcome whose probability is returned.     * @return The probability of the specified outcome.     */    public abstract double probability(long outcome);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -