⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 poissondistribution.java

📁 一个自然语言处理的Java开源工具包。LingPipe目前已有很丰富的功能
💻 JAVA
字号:
/* * LingPipe v. 3.5 * Copyright (C) 2003-2008 Alias-i * * This program is licensed under the Alias-i Royalty Free License * Version 1 WITHOUT ANY WARRANTY, without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the Alias-i * Royalty Free License Version 1 for more details. * * You should have received a copy of the Alias-i Royalty Free License * Version 1 along with this program; if not, visit * http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt or contact * Alias-i, Inc. at 181 North 11th Street, Suite 401, Brooklyn, NY 11211, * +1 (718) 290-9170. */package com.aliasi.stats;/** * The <code>PoissonDistribution</code> abstract class is used for * calculating Poisson distributions.  Poisson distributions are * limits of Poisson processes, and are used to model rates of * occurrences of events within a fixed period (of time, space, etc.). * Poisson distributions are good models of lengths of texts or the * rate of occurrence of words in text, as well as many other natural * phenomena. * * <P>The Poisson distribution is a parametric discrete distribution * with a single parameter <code>&lambda; &gt; 0</code> which is the * average rate of occurrence of events in a period. The resulting * distribution provides a likelihood for each non-negative number of * outcomes.  Specifically, the Poisson distribution with rate * parameter &lambda; is defined for <code><i>k</i> &gt; 0</code> by: * * <blockquote><code> *   Poisson<sub><sub><sub>&lambda;</sub></sub></sub>(<i>k</i>) *   = e<sup><sup>-&lambda;</sup></sup> &lambda;<sup><sup><i>k</i></sup></sup> / <i>k</i>! * </code></blockquote> * * Note that this definition produces a properly normalized * probability distribution over natural numbers; if <code>&lambda; * &gt; 0</code>, then: * * <blockquote><code> *   <big><big>&Sigma;</big></big><sub><sub><i>k</i> >= 0</sub></sub> *   Poisson<sub><sub><sub>&lambda;</sub></sub></sub>(<i>k</i>) *   = 1.0 * </code></blockquote> * * The expected value of a Poisson distribution is equal to the rate parameter: * * <blockquote><code> * E(Poisson<sub><sub><sub>&lambda;</sub></sub></sub>) = &lambda; * </code></blockquote> * * The variance is also equal to the rate parameter: * * <blockquote><code> * Var(Poisson<sub><sub><sub>&lambda;</sub></sub></sub>) * =<sub><sub><i>def</i></sub></sub> * E([Poisson<sub><sub><sub>&lambda;</sub></sub></sub> - E(Poisson<sub><sub><sub>&lambda;</sub></sub></sub>)]<sup><sup>2</sup></sup>) * = &lambda; * </blockquote></code> * * <P>Concrete subclasses need only implement the abstract {@link * #mean()} method; the method {@link #log2Probability(long)} computes the * log (base 2) of the Poisson probability estimate for a given number * of outcomes in terms of the value of the rate parameter * <code>lambda()</code>.  Logarithms are used to prevent over- and * underflow in calculations. * * * <P>For more information, see:  * <UL>  * <LI> Eric  W. Weisstein.  * <a href="http://mathworld.wolfram.com/PoissonDistribution.html">Poisson Distribution</a>. * From <i>MathWorld</i>--A Wolfram Web Resource.  * </UL> * @author  Bob Carpenter * @version 2.0 * @since   LingPipe2.0 */public abstract class PoissonDistribution extends AbstractDiscreteDistribution {    /**     * Construct an abstract Poisson distribution.     */    protected PoissonDistribution() {         /* do nothing */    }    /**     * Returns the mean of this Poisson distribution, which is equal     * to the rate parameter &lambda;.  Concrete implementations are     * responsible for ensuring that the mean is positive and finite.     *     * @return The mean of this distribution.     */    public abstract double mean();    /**     * Returns the variance of this Poisson distribution, which is     * equal to the mean.     *     * @return The variance of this distribution.     */    public double variance() {        return mean();    }    /**     * Returns the minimum outcome with non-zero probability,     * <code>0</code>.     *     * @return Zero.     */    public long minOutcome() {        return 0l;    }    /**     * Returns the log (base 2) probability estimate in this Poisson     * distribution for the specified outcome.  This method will throw     * an illegal state exception if the mean implementation returns a     * non-positive number.  If the outcome is negative, the result     * will be negative-infinity.     *     * @param outcome The outcome being estimated.       * @return The log (base 2) probability of finding the specified     * number of outcomes given this distribution's rate parameter.     * @throws IllegalStateException if the mean is not a positive     * finite value.     */    public final double log2Probability(long outcome) {        return log2Poisson(mean(),outcome);    }    /**     * Returns the probability estimate in this Poisson distribution     * for the specified outcome.  Note that if the outcome is     * negative, the result will be zero.     *     * @param outcome The outcome whose probability is returned.     * @return The log (base 2) probability of finding the specified     * number of outcomes given this distribution's rate parameter.     * @throws IllegalStateException If the mean is not a positive     * finite value.     */    public final double probability(long outcome) {        return Math.pow(2.0,log2Probability(outcome));    }        private static double log2Poisson(double lambda, long k) {        if (lambda <= 0.0 || Double.isInfinite(lambda)) {            String msg = "Mean must be a positive non-infiite value."                + " Found mean=" + lambda;            throw new IllegalStateException(msg);        }        if (k < 0l) return Double.NEGATIVE_INFINITY;        return -lambda * com.aliasi.util.Math.LOG2_E            + (((double)k) * com.aliasi.util.Math.log2(lambda))            - com.aliasi.util.Math.log2Factorial(k);    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -