📄 poissondistribution.java
字号:
/* * LingPipe v. 3.5 * Copyright (C) 2003-2008 Alias-i * * This program is licensed under the Alias-i Royalty Free License * Version 1 WITHOUT ANY WARRANTY, without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Alias-i * Royalty Free License Version 1 for more details. * * You should have received a copy of the Alias-i Royalty Free License * Version 1 along with this program; if not, visit * http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt or contact * Alias-i, Inc. at 181 North 11th Street, Suite 401, Brooklyn, NY 11211, * +1 (718) 290-9170. */package com.aliasi.stats;/** * The <code>PoissonDistribution</code> abstract class is used for * calculating Poisson distributions. Poisson distributions are * limits of Poisson processes, and are used to model rates of * occurrences of events within a fixed period (of time, space, etc.). * Poisson distributions are good models of lengths of texts or the * rate of occurrence of words in text, as well as many other natural * phenomena. * * <P>The Poisson distribution is a parametric discrete distribution * with a single parameter <code>λ > 0</code> which is the * average rate of occurrence of events in a period. The resulting * distribution provides a likelihood for each non-negative number of * outcomes. Specifically, the Poisson distribution with rate * parameter λ is defined for <code><i>k</i> > 0</code> by: * * <blockquote><code> * Poisson<sub><sub><sub>λ</sub></sub></sub>(<i>k</i>) * = e<sup><sup>-λ</sup></sup> λ<sup><sup><i>k</i></sup></sup> / <i>k</i>! * </code></blockquote> * * Note that this definition produces a properly normalized * probability distribution over natural numbers; if <code>λ * > 0</code>, then: * * <blockquote><code> * <big><big>Σ</big></big><sub><sub><i>k</i> >= 0</sub></sub> * Poisson<sub><sub><sub>λ</sub></sub></sub>(<i>k</i>) * = 1.0 * </code></blockquote> * * The expected value of a Poisson distribution is equal to the rate parameter: * * <blockquote><code> * E(Poisson<sub><sub><sub>λ</sub></sub></sub>) = λ * </code></blockquote> * * The variance is also equal to the rate parameter: * * <blockquote><code> * Var(Poisson<sub><sub><sub>λ</sub></sub></sub>) * =<sub><sub><i>def</i></sub></sub> * E([Poisson<sub><sub><sub>λ</sub></sub></sub> - E(Poisson<sub><sub><sub>λ</sub></sub></sub>)]<sup><sup>2</sup></sup>) * = λ * </blockquote></code> * * <P>Concrete subclasses need only implement the abstract {@link * #mean()} method; the method {@link #log2Probability(long)} computes the * log (base 2) of the Poisson probability estimate for a given number * of outcomes in terms of the value of the rate parameter * <code>lambda()</code>. Logarithms are used to prevent over- and * underflow in calculations. * * * <P>For more information, see: * <UL> * <LI> Eric W. Weisstein. * <a href="http://mathworld.wolfram.com/PoissonDistribution.html">Poisson Distribution</a>. * From <i>MathWorld</i>--A Wolfram Web Resource. * </UL> * @author Bob Carpenter * @version 2.0 * @since LingPipe2.0 */public abstract class PoissonDistribution extends AbstractDiscreteDistribution { /** * Construct an abstract Poisson distribution. */ protected PoissonDistribution() { /* do nothing */ } /** * Returns the mean of this Poisson distribution, which is equal * to the rate parameter λ. Concrete implementations are * responsible for ensuring that the mean is positive and finite. * * @return The mean of this distribution. */ public abstract double mean(); /** * Returns the variance of this Poisson distribution, which is * equal to the mean. * * @return The variance of this distribution. */ public double variance() { return mean(); } /** * Returns the minimum outcome with non-zero probability, * <code>0</code>. * * @return Zero. */ public long minOutcome() { return 0l; } /** * Returns the log (base 2) probability estimate in this Poisson * distribution for the specified outcome. This method will throw * an illegal state exception if the mean implementation returns a * non-positive number. If the outcome is negative, the result * will be negative-infinity. * * @param outcome The outcome being estimated. * @return The log (base 2) probability of finding the specified * number of outcomes given this distribution's rate parameter. * @throws IllegalStateException if the mean is not a positive * finite value. */ public final double log2Probability(long outcome) { return log2Poisson(mean(),outcome); } /** * Returns the probability estimate in this Poisson distribution * for the specified outcome. Note that if the outcome is * negative, the result will be zero. * * @param outcome The outcome whose probability is returned. * @return The log (base 2) probability of finding the specified * number of outcomes given this distribution's rate parameter. * @throws IllegalStateException If the mean is not a positive * finite value. */ public final double probability(long outcome) { return Math.pow(2.0,log2Probability(outcome)); } private static double log2Poisson(double lambda, long k) { if (lambda <= 0.0 || Double.isInfinite(lambda)) { String msg = "Mean must be a positive non-infiite value." + " Found mean=" + lambda; throw new IllegalStateException(msg); } if (k < 0l) return Double.NEGATIVE_INFINITY; return -lambda * com.aliasi.util.Math.LOG2_E + (((double)k) * com.aliasi.util.Math.log2(lambda)) - com.aliasi.util.Math.log2Factorial(k); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -