⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bernoulliestimator.java

📁 一个自然语言处理的Java开源工具包。LingPipe目前已有很丰富的功能
💻 JAVA
字号:
/* * LingPipe v. 3.5 * Copyright (C) 2003-2008 Alias-i * * This program is licensed under the Alias-i Royalty Free License * Version 1 WITHOUT ANY WARRANTY, without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the Alias-i * Royalty Free License Version 1 for more details. * * You should have received a copy of the Alias-i Royalty Free License * Version 1 along with this program; if not, visit * http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt or contact * Alias-i, Inc. at 181 North 11th Street, Suite 401, Brooklyn, NY 11211, * +1 (718) 290-9170. */package com.aliasi.stats;import com.aliasi.util.AbstractExternalizable;import com.aliasi.util.Compilable;import java.io.ObjectInput;import java.io.ObjectOutput;import java.io.IOException;/** * A <code>BernoulliEstimator</code> provides a maximum likelihood * estimate of a Bernoulli distribution.  Training samples are * provided through the method {@link #train(boolean,int)} specifying * success or failure and the number of samples.  An unbiased * estimator for a Bernoulli distribution's probability of success is * simply the percentage of successes. * * @author Bob Carpenter * @version 2.4 * @since   LingPipe2.0 */public class BernoulliEstimator     extends BernoulliDistribution     implements Compilable {    long mTotalCount;    long mSuccessCount;    /**     * Construct a Bernoulli estimator with zero counts.     */    public BernoulliEstimator() {         /* do nothing */    }    /**     * Train this estimator with the specified number of samples     * for success or failure as specified.     *     * @param success A flag for whether the training samples     * are for success or failure.     * @param numSamples Number of samples to train.     */    public void train(boolean success, int numSamples) {        mTotalCount += numSamples;        if (success) mSuccessCount += numSamples;    }    /**     * Trains the estimator with one sample that is specified as     * a success or failure.     *     * @param success Flag for whether the sample was a success     * or a failure.     */    public void train(boolean success) {        train(success,1);    }    /**     * Returns the maximum likelihood estimate of success from     * the training samples provided.     *     * @return The maximum likelihood estimate of success from     * the training samples provided.     */    public double successProbability() {        return ((double) mSuccessCount) / (double) mTotalCount;    }    /**     * Returns the number of training samples provided for this     * estimator.     *     * @return The number of training samples provided for this     * estimator.     */    public long numTrainingSamples() {        return mTotalCount;    }    /**     * Returns the number of training samples for the specified     * outcome, success or failure.     *     * @param success Flag indicating whether outcome is success     * or failure.     * @return Count of training samples with specified success.     */    public long numTrainingSamples(boolean success) {        return success ? mSuccessCount : (mTotalCount - mSuccessCount);    }    /**     * Compiles this Bernoulli estimator to the specified object     * output.  The corresponding read will produce an instance of     * {@link BernoulliConstant} with the same success probability as     * the estimate derived from this estimator.     *     * @param objOut Object output to which this Bernoulli distribution     * is written.     */    public void compileTo(ObjectOutput objOut) throws IOException {        objOut.writeObject(new Externalizer(this));    }    static class Externalizer extends AbstractExternalizable {        private static final long serialVersionUID = -3979523774865702910L;        final BernoulliEstimator mDistro;        public Externalizer() { mDistro = null; }        public Externalizer(BernoulliEstimator distro) {            mDistro = distro;        }        public void writeExternal(ObjectOutput out) throws IOException {            out.writeDouble(mDistro.successProbability());        }        public Object read(ObjectInput in) throws IOException {            double successProb = in.readDouble();            return new BernoulliConstant(successProb);        }    }    }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -