📄 minkowskidistance.java
字号:
/* * LingPipe v. 3.5 * Copyright (C) 2003-2008 Alias-i * * This program is licensed under the Alias-i Royalty Free License * Version 1 WITHOUT ANY WARRANTY, without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Alias-i * Royalty Free License Version 1 for more details. * * You should have received a copy of the Alias-i Royalty Free License * Version 1 along with this program; if not, visit * http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt or contact * Alias-i, Inc. at 181 North 11th Street, Suite 401, Brooklyn, NY 11211, * +1 (718) 290-9170. */package com.aliasi.matrix;import com.aliasi.util.Distance;import java.io.Serializable;/** * The <code>MinkowskiDistance</code> class implements Minkowski * distance of a fixed order between vectors. or Manhattan distance * between vectors. Minkowski distance of any order forms a metric. * The Minkowski distance of order <code>p</code> is often called * <code>L<sub>p</sub></code> or the <code>p-norm distance</code>. * * <p>Minkowski distance generalizes taxicab and Euclidean distance, * which are just the Minkowski distances of order 1 and 2 * respectively. For orders 1 and 2, the taxicab and Euclidean * distance classes {@link TaxicabDistance} and {@link * EuclideanDistance} are more efficient in that they do not require * exponentiation to be calculated. * * <p>The definition of Minkowski distance of order <code>p</code> * over vectors <code>v1</code> and <code>v2</code> is: * * <blockquote><pre> * distance(v1,v2,p) = (<big><big>Σ</big></big><sub><sub>i</sub></sub> abs(v1[i] - v2[i])<sup><sup>p</sup></sup>)<sup><sup><big>(1/p)</big></sup></sup></pre></blockquote> * * with <code>v1[i]</code> standing for the method call * <code>v1.value(i)</code> and <code>i</code> ranging over the * dimensions of the vectors, which must be the same. * * <p>An understandable explanation of the Minkowski distances, * including the special cases of Taxicab (<code>L<sub>1</sub></code> norm) * and Euclidean (<code>L<sub>2</sub></code> norm) may be * found at: * * <ul> * <li><a href="http://en.wikipedia.org/wiki/Distance#Distance_in_Euclidean_space">Wikipedia: Distance in Euclidean Space</a></li> * </ul> * * @author Bob Carpenter * @version 3.1 * @since LingPipe3.1 */public class MinkowskiDistance implements Distance<Vector>, Serializable { int mOrder; /** * Construct a new Minkowski distance of the specified order. * * @param order Order of metric. * @throws IllegalArgumentException If the order is not 1 or greater. */ public MinkowskiDistance(int order) { mOrder = order; } /** * Returns the order of this Minkowski distance. * * @return The order of this Minkowski distance. */ public int order() { return mOrder; } /** * Returns the Minkowski distance between the specified pair * of vectors. * * @param v1 First vector. * @param v2 Second vector. * @return The distance between the vectors. * @throws IllegalArgumentException If the vectors are not of the * same dimensionality. */ public double distance(Vector v1, Vector v2) { if (v1.numDimensions() != v2.numDimensions()) { String msg = "Vectors must have same dimensions." + " v1.numDimensions()=" + v1.numDimensions() + " v2.numDimensions()=" + v2.numDimensions(); throw new IllegalArgumentException(msg); } if (v1 instanceof SparseFloatVector && v2 instanceof SparseFloatVector) return sparseDistance((SparseFloatVector)v1, (SparseFloatVector)v2); double sum = 0.0; for (int i = v1.numDimensions(); --i >= 0; ) { double absDiff = Math.abs(v1.value(i) - v2.value(i)); sum += Math.pow(absDiff,mOrder); } return Math.pow(sum,1.0/mOrder); } double sparseDistance(SparseFloatVector v1, SparseFloatVector v2) { double sum = 0.0; int index1 = 0; int index2 = 0; int[] keys1 = v1.mKeys; int[] keys2 = v2.mKeys; float[] vals1 = v1.mValues; float[] vals2 = v2.mValues; while (index1 < keys1.length && index2 < keys2.length) { int comp = keys1[index1] - keys2[index2]; double diff = Math.abs((comp == 0) ? (vals1[index1++] - vals2[index2++]) : (comp < 0) ? vals1[index1++] : vals2[index2++]); sum += Math.pow(diff,mOrder); } for ( ; index1 < keys1.length; ++index1) sum += Math.pow(Math.abs(vals1[index1]),mOrder); for ( ; index2 < keys2.length; ++index2) sum += Math.pow(Math.abs(vals2[index2]),mOrder); return Math.pow(sum,1.0/mOrder); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -