📄 euclideandistance.java
字号:
/* * LingPipe v. 3.5 * Copyright (C) 2003-2008 Alias-i * * This program is licensed under the Alias-i Royalty Free License * Version 1 WITHOUT ANY WARRANTY, without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Alias-i * Royalty Free License Version 1 for more details. * * You should have received a copy of the Alias-i Royalty Free License * Version 1 along with this program; if not, visit * http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt or contact * Alias-i, Inc. at 181 North 11th Street, Suite 401, Brooklyn, NY 11211, * +1 (718) 290-9170. */package com.aliasi.matrix;import com.aliasi.util.Distance;import java.io.Serializable;/** * The <code>EuclideanDistance</code> class implements standard * Euclidean distance between vectors. Euclidean distance forms a * metric. Euclidean distance is often called the * <code>L<sub>2</sub></code> distance, because it is 2-norm Minkowski * distance. * * <p>The definition of Euclidean distance over vectors * <code>v1</code> and <code>v2</code> is: * * <blockquote><pre> * distance(v1,v2) = sqrt(<big><big>Σ</big></big><sub><sub>i</sub></sub> (v1[i] - v2[i])<sup><sup>2</sup></sup> ) * </pre></blockquote> * * with <code>v1[i]</code> standing for the method call * <code>v1.value(i)</code> and <code>i</code> ranging over the * dimensions of the vectors, which must be the same. * * <p>Note that the Euclidean distance is equivalent to the * Minkowski distance metric of order 2. See the class * documentation for {@link MinkowskiDistance} for more information. * * <p>An understandable explanation of Euclidean and related * distances may be found at: * * <ul> * <li><a href="http://en.wikipedia.org/wiki/Distance#Distance_in_Euclidean_space">Wikipedia: Distance in Euclidean Space</a></li> * </ul> * * @author Bob Carpenter * @version 3.1 * @since LingPipe3.1 */public class EuclideanDistance implements Distance<Vector>, Serializable { static final long serialVersionUID = -7331942504500606550L; /** * The Euclidean distance. All instances of Euclidean distance * perform the same function. Because the distance function is * thread safe, this instance may be used wherever Euclidean * distance is needed. */ public static final EuclideanDistance DISTANCE = new EuclideanDistance(); /** * Construct a new Euclidean distance. */ public EuclideanDistance() { } /** * Returns the Euclidean distance between the specified pair * of vectors. * * @param v1 First vector. * @param v2 Second vector. * @return The distance between the vectors. * @throws IllegalArgumentException If the vectors are not of the * same dimensionality. */ public double distance(Vector v1, Vector v2) { if (v1.numDimensions() != v2.numDimensions()) { String msg = "Vectors must have same dimensions." + " v1.numDimensions()=" + v1.numDimensions() + " v2.numDimensions()=" + v2.numDimensions(); throw new IllegalArgumentException(msg); } if (v1 instanceof SparseFloatVector && v2 instanceof SparseFloatVector) return sparseDistance((SparseFloatVector)v1, (SparseFloatVector)v2); double sum = 0.0; for (int i = v1.numDimensions(); --i >= 0; ) { double diff = v1.value(i) - v2.value(i); sum += diff * diff; } return Math.sqrt(sum); } static double sparseDistance(SparseFloatVector v1, SparseFloatVector v2) { double sum = 0.0; int index1 = 0; int index2 = 0; int[] keys1 = v1.mKeys; int[] keys2 = v2.mKeys; float[] vals1 = v1.mValues; float[] vals2 = v2.mValues; int len = keys1.length; while (index1 < keys1.length && index2 < keys2.length) { int comp = keys1[index1] - keys2[index2]; double diff = (comp == 0) ? (vals1[index1++] - vals2[index2++]) : ( (comp < 0) ? vals1[index1++] : vals2[index2++]); sum += diff * diff; } for ( ; index1 < keys1.length; ++index1) sum += vals1[index1] * vals1[index1]; for ( ; index2 < keys2.length; ++index2) sum += vals2[index2] * vals2[index2]; return Math.sqrt(sum); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -