⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 euclideandistance.java

📁 一个自然语言处理的Java开源工具包。LingPipe目前已有很丰富的功能
💻 JAVA
字号:
/* * LingPipe v. 3.5 * Copyright (C) 2003-2008 Alias-i * * This program is licensed under the Alias-i Royalty Free License * Version 1 WITHOUT ANY WARRANTY, without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the Alias-i * Royalty Free License Version 1 for more details. * * You should have received a copy of the Alias-i Royalty Free License * Version 1 along with this program; if not, visit * http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt or contact * Alias-i, Inc. at 181 North 11th Street, Suite 401, Brooklyn, NY 11211, * +1 (718) 290-9170. */package com.aliasi.matrix;import com.aliasi.util.Distance;import java.io.Serializable;/** * The <code>EuclideanDistance</code> class implements standard * Euclidean distance between vectors.  Euclidean distance forms a * metric.  Euclidean distance is often called the * <code>L<sub>2</sub></code> distance, because it is 2-norm Minkowski * distance. * * <p>The definition of Euclidean distance over vectors * <code>v1</code> and <code>v2</code> is: * * <blockquote><pre> * distance(v1,v2) = sqrt(<big><big>&Sigma;</big></big><sub><sub>i</sub></sub> (v1[i] - v2[i])<sup><sup>2</sup></sup>  ) * </pre></blockquote> * * with <code>v1[i]</code> standing for the method call * <code>v1.value(i)</code> and <code>i</code> ranging over the * dimensions of the vectors, which must be the same. * * <p>Note that the Euclidean distance is equivalent to the * Minkowski distance metric of order 2.  See the class * documentation for {@link MinkowskiDistance} for more information. * * <p>An understandable explanation of Euclidean and related * distances may be found at: * * <ul> * <li><a href="http://en.wikipedia.org/wiki/Distance#Distance_in_Euclidean_space">Wikipedia: Distance in Euclidean Space</a></li> * </ul> * * @author  Bob Carpenter * @version 3.1 * @since   LingPipe3.1 */public class EuclideanDistance    implements Distance<Vector>,               Serializable {    static final long serialVersionUID = -7331942504500606550L;    /**     * The Euclidean distance.  All instances of Euclidean distance     * perform the same function.  Because the distance function is     * thread safe, this instance may be used wherever Euclidean     * distance is needed.     */    public static final EuclideanDistance DISTANCE        = new EuclideanDistance();    /**     * Construct a new Euclidean distance.     */    public EuclideanDistance() {    }    /**     * Returns the Euclidean distance between the specified pair     * of vectors.     *     * @param v1 First vector.     * @param v2 Second vector.     * @return The distance between the vectors.     * @throws IllegalArgumentException If the vectors are not of the     * same dimensionality.     */    public double distance(Vector v1, Vector v2) {        if (v1.numDimensions() != v2.numDimensions()) {            String msg = "Vectors must have same dimensions."                + " v1.numDimensions()=" + v1.numDimensions()                + " v2.numDimensions()=" + v2.numDimensions();            throw new IllegalArgumentException(msg);        }        if (v1 instanceof SparseFloatVector && v2 instanceof SparseFloatVector)            return sparseDistance((SparseFloatVector)v1,                                  (SparseFloatVector)v2);        double sum = 0.0;        for (int i = v1.numDimensions(); --i >= 0; ) {            double diff = v1.value(i) - v2.value(i);            sum += diff * diff;        }        return Math.sqrt(sum);    }    static double sparseDistance(SparseFloatVector v1,                                 SparseFloatVector v2) {        double sum = 0.0;        int index1 = 0;        int index2 = 0;        int[] keys1 = v1.mKeys;        int[] keys2 = v2.mKeys;        float[] vals1 = v1.mValues;        float[] vals2 = v2.mValues;        int len = keys1.length;        while (index1 < keys1.length && index2 < keys2.length) {            int comp = keys1[index1] - keys2[index2];            double diff                = (comp == 0)                ? (vals1[index1++] - vals2[index2++])                : ( (comp < 0)                    ? vals1[index1++]                    : vals2[index2++]);            sum += diff * diff;        }        for ( ; index1 < keys1.length; ++index1)            sum += vals1[index1] * vals1[index1];        for ( ; index2 < keys2.length; ++index2)            sum += vals2[index2] * vals2[index2];        return Math.sqrt(sum);    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -