📄 kernelfunction.java
字号:
/* * LingPipe v. 3.5 * Copyright (C) 2003-2008 Alias-i * * This program is licensed under the Alias-i Royalty Free License * Version 1 WITHOUT ANY WARRANTY, without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Alias-i * Royalty Free License Version 1 for more details. * * You should have received a copy of the Alias-i Royalty Free License * Version 1 along with this program; if not, visit * http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt or contact * Alias-i, Inc. at 181 North 11th Street, Suite 401, Brooklyn, NY 11211, * +1 (718) 290-9170. */package com.aliasi.matrix;import com.aliasi.util.Proximity;/** * A <code>KernelFunction</code> computes real-valued proximities * between vectors. Note that proximity runs in the reverse direction * from distance: the more similar two vectors are, * the greater their proximity. * * <p>Implementations of the standard kernel functions used for * machine learning are provided in this package, including {@link * DotProductKernel}, {@link PolynomialKernel}, {@link * GaussianRadialBasisKernel}, and {@link HyperbolicTangentKernel}. * See those classes' documentation for definitions of the specific * kernel functions. * * <p>Typically kernel functions will be functions that could, * in theory, be represented by inner products of vectors * <code>f(v)</code>, where <code>f</code> maps an n-dimensional * input vector to an m-dimensional or even infinite-dimensional * vector <code>f(v)</code>. The kernel function is then * defined as <code>kernel(v1,v2) = f(v1) * f(v2)</code>, where * <code>f(v)</code> is the embedding function and <code>*</code> * represents the dot-product. * * <p>The use of kernel functions is usually for the so-called * "kernel trick", which allows classification or clustering * in high-dimensional spaces by embedding a lower-dimensional space * and then working with linear combinations of kernel function * results. * * <ul> * <li><a href="http://en.wikipedia.org/wiki/Kernel_trick">Wikipedia: Kernel Trick</a></li> * </ul> * * @author Bob Carpenter * @version 3.1 * @since LingPipe3.1 */public interface KernelFunction extends Proximity<Vector> { /** * Return the result of applying the kernel function to the * specified pair of vectors. * * @param v1 First vector. * @param v2 Second vector. * @return Kernel function applied to the vectors. */ public double proximity(Vector v1, Vector v2);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -