⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 polynomialkernel.java

📁 一个自然语言处理的Java开源工具包。LingPipe目前已有很丰富的功能
💻 JAVA
字号:
/* * LingPipe v. 3.5 * Copyright (C) 2003-2008 Alias-i * * This program is licensed under the Alias-i Royalty Free License * Version 1 WITHOUT ANY WARRANTY, without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the Alias-i * Royalty Free License Version 1 for more details. * * You should have received a copy of the Alias-i Royalty Free License * Version 1 along with this program; if not, visit * http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt or contact * Alias-i, Inc. at 181 North 11th Street, Suite 401, Brooklyn, NY 11211, * +1 (718) 290-9170. */package com.aliasi.matrix;import com.aliasi.util.AbstractExternalizable;import java.io.IOException;import java.io.ObjectInput;import java.io.ObjectOutput;import java.io.Serializable;/** * A <code>PolynomialKernel</code> provides a dot product over a fixed * degree polynomial basis expansion of a vector. * * <p>The polynomial kernel of degree <code>d</code> over vectors * <code>v1</code> and <code>v2</code> is defined in terms of * underlying vector dot products: * * <blockquote><pre> * kernel(v1,v2) = (1 + v1 * v2)<sup><sup>d</sup></sup></pre></blockquote> * * where <code>v1 * v2</code> is shorthand for the method call * <code>v1.dotProduct(v2)</code>. * * <h3>Serialization</h3> * * <p>A polynomial kernel may be serialized. * * <h3>Background Reading</h3> * * <p>A thorough discussion of kernel functions and kernel-based * classifiers may be found in: * * <ul> * <li>Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2001. * <i>The Elements of Statistical Learning</i>. Springer-Verlag. * </li> * </ul> * * @author  Bob Carpenter * @version 3.1 * @since   LingPipe3.1 */public class PolynomialKernel    implements KernelFunction, Serializable {    private final int mDegree;    /**     * Construct a polynomial kernel function of the specified degree.     *     * @param degree Degree of the polynomial kernel.     */    public PolynomialKernel(int degree) {        mDegree = degree;    }    /**     * Returns the result of applying the polynomial kernel of     * this class's degree to the specified vectors.     *     * @param v1 First vector.     * @param v2 Second vector.     * @return Polynomial kernel function applied to the two vectors.     * @throws IllegalArgumentException If the vectors are not of the     * same dimensionality.     */    public double proximity(Vector v1, Vector v2) {        return power(1.0 + v1.dotProduct(v2));    }    double power(double base) {        switch (mDegree) {        case 0: return 1.0;        case 1: return base;        case 2: return base * base;        case 3: return base * base * base;        case 4: return base * base * base * base;        default: return Math.pow(base,mDegree);        }    }    /**     * Returns a string-based representation of this kernel     * function, including the kernel type and degree.     *     * @return A string representing this kernel.     */    public String toString() {        return "PolynomialKernel(" + mDegree + ")";    }    Object writeReplace() {        return new Externalizer(mDegree);    }    static class Externalizer extends AbstractExternalizable {        static final long serialVersionUID = 4795059467534365487L;        final int mDegree;        public Externalizer() {            this(-1);        }        public Externalizer(int degree) {            mDegree = degree;        }        public void writeExternal(ObjectOutput out) throws IOException {            out.writeInt(mDegree);        }        public Object read(ObjectInput in) throws IOException {            int degree = in.readInt();            return new PolynomialKernel(degree);        }    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -