📄 gaussianradialbasiskernel.java
字号:
/* * LingPipe v. 3.5 * Copyright (C) 2003-2008 Alias-i * * This program is licensed under the Alias-i Royalty Free License * Version 1 WITHOUT ANY WARRANTY, without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Alias-i * Royalty Free License Version 1 for more details. * * You should have received a copy of the Alias-i Royalty Free License * Version 1 along with this program; if not, visit * http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt or contact * Alias-i, Inc. at 181 North 11th Street, Suite 401, Brooklyn, NY 11211, * +1 (718) 290-9170. */package com.aliasi.matrix;import com.aliasi.util.AbstractExternalizable;import java.io.IOException;import java.io.ObjectInput;import java.io.ObjectOutput;import java.io.Serializable;/** * A <code>GaussianRadialBasisKernel</code> provides a kernel based on * a Gaussian radial basis function with a fixed variance parameter. * As a kernel function, it unfolds into an infinite-dimension Hilbert * space. * * <p>The radial basis kernel function of radius <code>r</code> is * defined between vectors <code>v1</code> and <code>v2</code> as * follows: * * <blockquote><pre> * rbf(v1,v2) = exp(- r * distance(v1,v2)<sup><sup>2</sup></sup>) * </pre></blockquote> * * where <code>distance(v1,v2)</code> is the Euclidean distance, * as defined in the class documentation for {@link EuclideanDistance}. * In this formulation, the radius <code>r</code> is related to * the variance <code>σ<sup><sup>2</sup></sup></code> by: * * <blockquote><pre> * r = 1/(2 * σ<sup><sup>2</sup></sup>)</pre></blockquote> * * <p>For more information on the Gaussian radial basis kernel * and applications, see: * * <ul> * <li><a href="http://en.wikipedia.org/wiki/Radial_basis_function">Wikipedia: Radial Basis Function</a></li> * </ul> * * @author Bob Carpenter * @version 3.1 * @since LingPipe3.1 */public class GaussianRadialBasisKernel implements KernelFunction, Serializable { private final double mNegativeRadius; /** * Construct a Gaussian radial basis kernel with the specified * radius of influence. * * @param radius The radius of influence for the kernel. */ public GaussianRadialBasisKernel(double radius) { if (radius <= 0.0 || Double.isInfinite(radius) || Double.isNaN(radius)) { String msg = "Radius must be positive and finite." + " Found radius=" + radius; throw new IllegalArgumentException(msg); } mNegativeRadius = -radius; } GaussianRadialBasisKernel(double negativeRadius, boolean ignore) { mNegativeRadius = negativeRadius; } /** * Returns the result of applying this Guassian radial basis * kernel to the specified vectors. See the class documentation * above for a full definition. * * @param v1 First vector. * @param v2 Second vector. * @return Kernel function applied to the two vectors. * @throws IllegalArgumentException If the vectors are not of the * same dimensionality. */ public double proximity(Vector v1, Vector v2) { double dist = EuclideanDistance.DISTANCE.distance(v1,v2); return Math.exp(mNegativeRadius * (dist * dist)); } /** * Returns a string-based representation of this kernel * function, including the kernel type and radius. * * @return A string representing this kernel. */ public String toString() { return "GaussianRadialBasedKernel(" + (-mNegativeRadius) + ")"; } Object writeReplace() { return new Externalizer(mNegativeRadius); } static class Externalizer extends AbstractExternalizable { static final long serialVersionUID = -5223595743791099605L; final double mNegativeRadius; public Externalizer() { this(1.0); } public Externalizer(double negativeRadius) { mNegativeRadius = negativeRadius; } public void writeExternal(ObjectOutput out) throws IOException { out.writeDouble(mNegativeRadius); } public Object read(ObjectInput in) throws IOException { double negativeRadius = in.readDouble(); return new GaussianRadialBasisKernel(negativeRadius,true); } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -