📄 compiledtokenizedlm.java
字号:
/* * LingPipe v. 3.5 * Copyright (C) 2003-2008 Alias-i * * This program is licensed under the Alias-i Royalty Free License * Version 1 WITHOUT ANY WARRANTY, without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Alias-i * Royalty Free License Version 1 for more details. * * You should have received a copy of the Alias-i Royalty Free License * Version 1 along with this program; if not, visit * http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt or contact * Alias-i, Inc. at 181 North 11th Street, Suite 401, Brooklyn, NY 11211, * +1 (718) 290-9170. */package com.aliasi.lm;import com.aliasi.symbol.SymbolTable;import com.aliasi.tokenizer.TokenizerFactory;import com.aliasi.tokenizer.Tokenizer;import com.aliasi.util.Strings;import com.aliasi.util.Reflection;import java.io.ObjectInput;import java.io.IOException;import java.util.ArrayList;import java.util.Iterator;/** * A <code>CompiledTokenizedLM</code> implements a tokenized bounded * sequence language model. Instances are read from streams of bytes * created by compiling a {@link TokenizedLM}; see that class for * more information. * * @author Bob Carpenter * @version 3.0 * @since LingPipe2.0 */public class CompiledTokenizedLM implements LanguageModel.Sequence, LanguageModel.Tokenized { private final TokenizerFactory mTokenizerFactory; private final SymbolTable mSymbolTable; private final LanguageModel.Sequence mUnknownTokenModel; private final LanguageModel.Sequence mWhitespaceModel; private final int mMaxNGram; private final int[] mTokens; private final float[] mLogProbs; private final float[] mLogLambdas; private final int[] mFirstChild; CompiledTokenizedLM(ObjectInput in) throws IOException, ClassNotFoundException { String tokenizerClassName = in.readUTF(); mTokenizerFactory = (TokenizerFactory) Reflection.newInstance(tokenizerClassName); if (mTokenizerFactory == null) { String msg = "Could not construct tokenizer factory. " + "Called constructor=" + tokenizerClassName + "()."; throw new IOException(msg); } mSymbolTable = (SymbolTable) in.readObject(); mUnknownTokenModel = (LanguageModel.Sequence) in.readObject(); mWhitespaceModel = (LanguageModel.Sequence) in.readObject(); mMaxNGram = in.readInt(); int numNodes = in.readInt(); int lastInternalNodeIndex = in.readInt(); mTokens = new int[numNodes]; mLogProbs = new float[numNodes]; mLogLambdas = new float[lastInternalNodeIndex+1]; mFirstChild = new int[lastInternalNodeIndex+2]; mFirstChild[mFirstChild.length-1] = numNodes; // one past last dtr for (int i = 0; i < numNodes; ++i) { mTokens[i] = in.readInt(); mLogProbs[i] = in.readFloat(); if (i <= lastInternalNodeIndex) { mLogLambdas[i] = in.readFloat(); mFirstChild[i] = in.readInt(); } } } /** * Returns a string-based representation of this compiled language * model. * * <P><i>Warning:</i> The output may be very long for a large model * and may blow out memory attempting to pile it into a string * buffer. * * @return A string-based representation of this language model. */ public String toString() { StringBuffer sb = new StringBuffer(); sb.append("Tokenizer Class Name=" + mTokenizerFactory); sb.append('\n'); sb.append("Symbol Table=" + mSymbolTable); sb.append('\n'); sb.append("Unknown Token Model=" + mUnknownTokenModel); sb.append('\n'); sb.append("Whitespace Model=" + mWhitespaceModel); sb.append('\n'); sb.append("Token Trie"); sb.append('\n'); sb.append("Nodes=" + mTokens.length + " Internal=" + mLogLambdas.length); sb.append('\n'); sb.append("Index Tok logP firstDtr log(1-L)"); sb.append('\n'); for (int i = 0; i < mTokens.length; ++i) { sb.append(i); sb.append('\t'); sb.append(mTokens[i]); sb.append('\t'); sb.append(mLogProbs[i]); if (i < mFirstChild.length) { sb.append('\t'); sb.append(mFirstChild[i]); if (i < mLogLambdas.length) { sb.append('\t'); sb.append(mLogLambdas[i]); } } sb.append('\n'); } return sb.toString(); } // next two method cut-and-pasted from TokenizedLM public double log2Estimate(CharSequence cSeq) { char[] cs = Strings.toCharArray(cSeq); return log2Estimate(cs,0,cs.length); } public double log2Estimate(char[] cs, int start, int end) { Strings.checkArgsStartEnd(cs,start,end); double logEstimate = 0.0; Tokenizer tokenizer = mTokenizerFactory.tokenizer(cs,start,end-start); ArrayList tokenList = new ArrayList(); while (true) { String whitespace = tokenizer.nextWhitespace(); logEstimate += mWhitespaceModel.log2Estimate(whitespace); String token = tokenizer.nextToken(); if (token == null) break; tokenList.add(token); } // collect token ids, estimate unknown tokens int[] tokIds = new int[tokenList.size()+2]; tokIds[0] = TokenizedLM.BOUNDARY_TOKEN; tokIds[tokIds.length-1] = TokenizedLM.BOUNDARY_TOKEN; Iterator it = tokenList.iterator(); for (int i = 1; it.hasNext(); ++i) { String token = it.next().toString(); tokIds[i] = mSymbolTable.symbolToID(token); if (tokIds[i] < 0) { logEstimate += mUnknownTokenModel.log2Estimate(token); } } // estimate token ids for (int i = 2; i <= tokIds.length; ++i) { logEstimate += conditionalTokenEstimate(tokIds,0,i); } return logEstimate; } private double conditionalTokenEstimate(int[] tokIds, int start, int end) { double estimate = 0.0; int contextEnd = end-1; int tokId = tokIds[contextEnd]; // tok past ctxt is estimated int maxContextLength = Math.min(contextEnd-start,mMaxNGram-1); for (int contextLength = maxContextLength; contextLength >= 0; --contextLength) { int contextStart = contextEnd - contextLength; int contextIndex = getIndex(tokIds,contextStart,contextEnd); if (contextIndex == -1) continue; if (tokId == TokenizedLM.UNKNOWN_TOKEN) { if (hasDtrs(contextIndex)) estimate += mLogLambdas[contextIndex]; continue; } int outcomeIndex = getIndex(contextIndex,tokId); if (outcomeIndex != -1) return estimate + mLogProbs[outcomeIndex]; if (hasDtrs(contextIndex)) estimate += mLogLambdas[contextIndex]; } // fall through to here for unknowns return estimate; } public double tokenLog2Probability(String[] tokens, int start, int end) { int[] tokIds = new int[tokens.length]; for (int i = 0; i < tokens.length; ++i) tokIds[i] = mSymbolTable.symbolToID(tokens[i]); double sum = 0.0; for (int i = start+1; i <= end; ++i) sum += conditionalTokenEstimate(tokIds,start,i); return sum; } public double tokenProbability(String[] tokens, int start, int end) { return Math.pow(2.0,tokenLog2Probability(tokens,start,end)); } /** * Returns <code>true</code> if the context with the specified * index has at least one daughter node. * * @return <code>true</code> if the specified context node has a * daughter. */ boolean hasDtrs(int contextIndex) { return contextIndex < mLogLambdas.length && !Double.isNaN(mLogLambdas[contextIndex]); } // following cut-and-paste fr. CompiledNGramProcessLM w. type substs private int getIndex(int fromIndex, int tokId) { if (fromIndex+1 >= mFirstChild.length) return -1; int low = mFirstChild[fromIndex]; int high = mFirstChild[fromIndex+1]-1; while (low <= high) { int mid = (high + low)/2; if (mTokens[mid] == tokId) { return mid; } else if (mTokens[mid] < tokId) low = (low == mid) ? mid+1 : mid; else high = (high == mid) ? mid-1 : mid; } return -1; } private int getIndex(int[] tokIds, int start, int end) { int index = 0; for (int currentStart = start; currentStart < end; ++currentStart) { index = getIndex(index,tokIds[currentStart]); if (index == -1) return -1; } return index; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -