⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 compiledngramboundarylm.java

📁 一个自然语言处理的Java开源工具包。LingPipe目前已有很丰富的功能
💻 JAVA
字号:
/* * LingPipe v. 3.5 * Copyright (C) 2003-2008 Alias-i * * This program is licensed under the Alias-i Royalty Free License * Version 1 WITHOUT ANY WARRANTY, without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the Alias-i * Royalty Free License Version 1 for more details. * * You should have received a copy of the Alias-i Royalty Free License * Version 1 along with this program; if not, visit * http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt or contact * Alias-i, Inc. at 181 North 11th Street, Suite 401, Brooklyn, NY 11211, * +1 (718) 290-9170. */package com.aliasi.lm;import java.io.ObjectInput;import java.io.IOException;import com.aliasi.stats.Model;import com.aliasi.util.Exceptions;/** * A <code>CompiledNGramBoundaryLM</code> is constructed by reading * the serialized form of an instance of {@link NGramBoundaryLM}. * * <P>The serialization format is the boundary character followed by * the serialization of an n-gram process language model. * * @author  Bob Carpenter * @version 3.5.1 * @since   LingPipe2.0 */public class CompiledNGramBoundaryLM    implements LanguageModel.Sequence,               LanguageModel.Conditional,               Model<CharSequence> {    private final char mBoundaryChar;    private final char[] mBoundaryArray;    private final CompiledNGramProcessLM mProcessLM;    /**     * Construct a compiled n-gram boundary langauge model from     * the specified object input.  See the class documentation for     * data format.     *     * @param objIn Object input from which to read the constructed     * class.     * @throws IOException If there is an error while reading the     * data.     */    CompiledNGramBoundaryLM(ObjectInput objIn)        throws IOException {        mBoundaryChar = objIn.readChar();        mBoundaryArray = new char[] { mBoundaryChar };        try {            mProcessLM = (CompiledNGramProcessLM) objIn.readObject();        } catch (ClassNotFoundException e) {            throw Exceptions.toIO("CompiledNGramBoundarLM(ObjectOutput)",e);        }    }    /**     * Returns the characters that have been observed for this     * language model, including the special boundary character.     *     * @return The observed characters for this langauge model.     */    public char[] observedCharacters() {        return mProcessLM.observedCharacters();    }    // ugly cut-and-paste from NGramBoundaryLM    public double log2ConditionalEstimate(CharSequence cs) {        if (cs.length() < 1) {            String msg = "Conditional estimates require at least one character.";            throw new IllegalArgumentException(msg);        }        char[] csBounded = NGramBoundaryLM.addBoundaries(cs,mBoundaryChar);        return mProcessLM.log2ConditionalEstimate(csBounded,0,csBounded.length-1);    }    public double log2ConditionalEstimate(char[] cs, int start, int end) {        if (end <= start) {            String msg = "Conditional estimates require at least one character.";            throw new IllegalArgumentException(msg);        }        char[] csBounded = NGramBoundaryLM.addBoundaries(cs,start,end,mBoundaryChar);        return mProcessLM.log2ConditionalEstimate(csBounded,0,csBounded.length-1);    }    public double log2Estimate(CharSequence cs) {        char[] csBounded = NGramBoundaryLM.addBoundaries(cs,mBoundaryChar);        return mProcessLM.log2Estimate(csBounded,0,csBounded.length)            - mProcessLM.log2Estimate(mBoundaryArray,0,1);    }    public double log2Estimate(char[] cs, int start, int end) {        char[] csBounded = NGramBoundaryLM.addBoundaries(cs,start,end,mBoundaryChar);        return mProcessLM.log2Estimate(csBounded,0,csBounded.length)            - mProcessLM.log2Estimate(mBoundaryArray,0,1);    }    /**     * This method is a convenience impelementation of the {@link     * Model} interface which delegates the call to {@link     * #log2Estimate(CharSequence)}.     *     * @param cSeq Character sequence whose probability is returned.     * @return The log (base 2) probability of the specified character sequence.     */    public double log2Prob(CharSequence cSeq) {        return log2Estimate(cSeq);    }    /**     * This method is a convenience implementation of the {@link Model}     * interface which returns the result of raising 2.0 to the      * power of the result of a call to {@link #log2Estimate(CharSequence)}.     *     * @param cSeq Character sequence whose probability is returned.     * @return The log probability of the specified character sequence.     */    public double prob(CharSequence cSeq) {        return Math.pow(2.0,log2Estimate(cSeq));    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -