⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rescoringchunker.java

📁 一个自然语言处理的Java开源工具包。LingPipe目前已有很丰富的功能
💻 JAVA
字号:
/* * LingPipe v. 3.5 * Copyright (C) 2003-2008 Alias-i * * This program is licensed under the Alias-i Royalty Free License * Version 1 WITHOUT ANY WARRANTY, without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the Alias-i * Royalty Free License Version 1 for more details. * * You should have received a copy of the Alias-i Royalty Free License * Version 1 along with this program; if not, visit * http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt or contact * Alias-i, Inc. at 181 North 11th Street, Suite 401, Brooklyn, NY 11211, * +1 (718) 290-9170. */package com.aliasi.chunk;import com.aliasi.util.BoundedPriorityQueue;import com.aliasi.util.ScoredObject;import com.aliasi.util.Strings;import java.util.HashMap;import java.util.Iterator;import java.util.Map;/** * A <code>RescoringChunker</code> provides first best, n-best and * confidence chunking by rescoring n-best chunkings derived from a * contained chunker. *  * <p>Concrete subclasses must implement the abstract method {@link * #rescore(Chunking)}, which provides a score for a chunking.  There * are no restrictions on how this score is computed; most typically, * it will be a longer-distance/higher-order model than the contained * chunker and provide more accurate results.   * * <p>The n-best chunker works by generating the top analyses from the * contained chunker.  The number of such analyses considered is * determined in the constructor for this class.  These are then * placed in a bounded priority queue with the bound determined by the * maximum specified in the call to {@link * #nBest(char[],int,int,int)}. * <p>The first-best chunker methods {@link #chunk(CharSequence)} and  * {@link #chunk(char[],int,int)} operate by choosing the top scoring * chunking from the rescoring of the contained chunker.  The number * of chunkings from the contained chunker that are rescored is * determined in the constructor.  This is more memory and time * efficient than running the n-best chunking. * * <h2>N-Best Chunks</h2> * * The {@link #nBestChunks(char[],int,int,int)} method is implemented * by walking over the n-best analyses generated by {@link * #nBest(char[],int,int,int)} with a maximum n-best for full analyses * set to the value of {@link #numChunkingsRescored()}, which may be * changed using {@link #setNumChunkingsRescored(int)}.  For each * analysis, the chunks are pulled out and their weight is incremented * by the n-best analysis weight.  Normalization is carried out by * dividing by the total probability mass in the returned n-best list. *  * <h2>Caching</h2> * * There is no caching in the rescoring chunker per se.  Any caching * needs to be carried out in the contained n-best chunker, which * is available as the return result of {@link #baseChunker()}. *  * @author  Bob Carpenter * @version 3.0 * @since   LingPipe2.3 */public abstract class RescoringChunker<B extends NBestChunker>    implements NBestChunker, ConfidenceChunker {    final B mChunker;    int mNumChunkingsRescored;    /**     * Construct a rescoring chunker that contains the specified base     * chunker and considers the specified number of chunkings for     * rescoring.     *     * @param chunker Base n-best chunker.     * @param numChunkingsRescored Number of chunkings generated     * by the base chunker to rescore.     */    public RescoringChunker(B chunker, int numChunkingsRescored) {        mChunker = chunker;        mNumChunkingsRescored = numChunkingsRescored;    }    /**     * Returns the score for a chunking.  This method is used to     * rescore the chunkings returned by the base chunker to order     * them for n-best or first-best return by this chunker.  Although     * the base chunker's score is ignored, it may be incorporated     * in a subclass's implementation of this method.     *     * <p>The rescoring should be in the form of log (base 2) joint     * probability estimate for the specified chunking.  For the     * simple whole-analysis rescoring method {@link     * #nBest(char[],int,int,int)}, this is not checked, and any     * values may be used in practice.  For the n-best chunk method     * {@link #nBestChunks(char[],int,int,int)}, the scores are     * treated as log probabilities, but renormalized in order to     * compute conditional chunk probability estimates.     *     * @param chunking Chunking to rescore.     * @return The new score for this chunking.     */    public abstract double rescore(Chunking chunking);    /**     * The base chunker that generates hypotheses to rescore.  Note     * that this is the actual chunker used by this class, so any     * changes to it will affect this class's behavior.  Common changes     * involve setting the underlying chunker's configuration.     *     * @return The base chunker.     */    public B baseChunker() {        return mChunker;    }    /**     * Return the number of chunkings to generate from the base     * chunker for rescoring.     *     * @return The number of base chunkings to rescore.     */    public int numChunkingsRescored() {        return mNumChunkingsRescored;    }    /**     * Set the number of base chunkings to rescore.  This value will     * be used in every chunking method to determine the underlying     * number of chunkings considered.     *     * @param numChunkingsRescored Number of base chunkings to     * rescore.     */    public void setNumChunkingsRescored(int numChunkingsRescored) {        mNumChunkingsRescored = numChunkingsRescored;    }    /**     * Returns the first-best chunking for the specified character     * sequence.  See the class documentation above for implementation     * details.     *     * @param cSeq Character sequence to chunk.     * @return First-best chunking of the specified character sequence.     */    public Chunking chunk(CharSequence cSeq) {        char[] cs = Strings.toCharArray(cSeq);        return chunk(cs,0,cs.length);    }    /**     * Returns the first-best chunking for the specified character     * slice.  See the class documentation above for implementation     * details.     *     * @param cs Underlying character array.     * @param start Index of first character to analyze.     * @param end Index of one past the last character to analyze.     * @return First-best chunking of the specified character slice.     */    public Chunking chunk(char[] cs, int start, int end) {        return firstBest(mChunker.nBest(cs,start,end,mNumChunkingsRescored));    }    /**     * Returns the n-best chunkings of the specified character slice.     * See the class documentation above for implementation details.     *      * @param cs Underlying character array.     * @param start Index of first character to analyze.     * @param end Index of one past the last character to analyze.     * @return Iterator over the n-best chunkings of the specified     * character slice.     */    public Iterator<ScoredObject<Chunking>> nBest(char[] cs, int start, int end,                                    int maxNBest) {        return nBest(mChunker.nBest(cs,start,end,                                    mNumChunkingsRescored),                     maxNBest);    }    /**     * Returns the n-best chunks for the specified character slice up to     * the specified maximum number of chunks.     *     * <p>See the class documentation above for implementation details.     *     * @param cs Underlying characters.     * @param start Index of first character in slice.     * @param end Index of one past last character in slice.     * @param maxNBest Maximum number of chunks to return.     */    public Iterator<Chunk> nBestChunks(char[] cs, int start, int end,                                        int maxNBest) {        double totalScore = 0.0;        Map<Chunk,Double> chunkToScore = new HashMap<Chunk,Double>();        Iterator<ScoredObject<Chunking>> it = nBest(cs,start,end,mNumChunkingsRescored);        while (it.hasNext()) {            ScoredObject<Chunking> so = it.next();            double score = Math.pow(2.0,so.score()); //             totalScore += score;            Chunking chunking = so.getObject();            for (Chunk chunk : chunking.chunkSet()) {                Chunk unscoredChunk                    = ChunkFactory.createChunk(chunk.start(), chunk.end(),                                               chunk.type());                Double currentScoreD = (Double) chunkToScore.get(chunk);                double currentScore = currentScoreD == null                     ? 0.0                    : currentScoreD.doubleValue();                double nextScore = currentScore + score;                chunkToScore.put(unscoredChunk,new Double(nextScore));            }        }        BoundedPriorityQueue<Chunk> bpq             = new BoundedPriorityQueue<Chunk>(ScoredObject.SCORE_COMPARATOR,                                              maxNBest);        for (Map.Entry<Chunk,Double> entry : chunkToScore.entrySet()) {            Chunk chunk = entry.getKey();            double conditionalEstimate = ((Double) entry.getValue()).doubleValue()                / totalScore;             Chunk scored = ChunkFactory.createChunk(chunk.start(),                                                    chunk.end(),                                                    chunk.type(),                                                    conditionalEstimate);            bpq.add(scored);        }        return bpq.iterator();    }    private Chunking firstBest(Iterator nBestChunkingIt) {        Chunking bestChunking = null;        double bestScore = Double.NEGATIVE_INFINITY;        while (nBestChunkingIt.hasNext()) {            ScoredObject scoredChunking                 = (ScoredObject) nBestChunkingIt.next();            Chunking chunking = (Chunking) scoredChunking.getObject();            double score = rescore(chunking);            if (score > bestScore) {                bestScore = score;                bestChunking = chunking;            }        }        return bestChunking;    }    private Iterator<ScoredObject<Chunking>>         nBest(Iterator<ScoredObject<Chunking>> nBestChunkingIt,               int maxNBest) {        BoundedPriorityQueue<ScoredObject<Chunking>> queue             = new BoundedPriorityQueue<ScoredObject<Chunking>>(ScoredObject.SCORE_COMPARATOR,                                                               maxNBest);        while (nBestChunkingIt.hasNext()) {            ScoredObject<Chunking> scoredChunking                 = nBestChunkingIt.next();            Chunking chunking = scoredChunking.getObject();            double score = rescore(chunking);            queue.add(new ScoredObject<Chunking>(chunking,score));        }        return queue.iterator();    }    }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -