⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 completelinkclusterer.java

📁 一个自然语言处理的Java开源工具包。LingPipe目前已有很丰富的功能
💻 JAVA
字号:
/* * LingPipe v. 3.5 * Copyright (C) 2003-2008 Alias-i * * This program is licensed under the Alias-i Royalty Free License * Version 1 WITHOUT ANY WARRANTY, without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the Alias-i * Royalty Free License Version 1 for more details. * * You should have received a copy of the Alias-i Royalty Free License * Version 1 along with this program; if not, visit * http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt or contact * Alias-i, Inc. at 181 North 11th Street, Suite 401, Brooklyn, NY 11211, * +1 (718) 290-9170. */package com.aliasi.cluster;import com.aliasi.util.BoundedPriorityQueue;import com.aliasi.util.Collections;import com.aliasi.util.Distance;import com.aliasi.util.ObjectToSet;import com.aliasi.util.Scored;import java.util.HashMap;import java.util.HashSet;import java.util.Iterator;import java.util.TreeSet;import java.util.Set;/** * A <code>CompleteLinkClusterer</code> implements complete link * agglomerative clustering.  Complete link clustering is a greedy * algorithm in which the two closest clusters are always merged up to * a specified distance threshold.  Distance between clusters for * complete link clustering is defined be the maximum of the distances * between the members of the clusters.  See {@link * SingleLinkClusterer} for a clusterer that takes the minimum rather * than the maximum in making clustering decisions. * * <P>For example, consider the following distance matrix (which is * also analyzed by way of example in {@link SingleLinkClusterer}): * * <blockquote> * <table border='1' cellpadding='5'> * <tr><td>&nbsp;</td><td>A</td><td>B</td><td>C</td><td>D</td><td>E</td></tr> * <tr><td>A</td><td>0</td><td>1</td><td>2</td><td>7</td><td>5</td></tr> * <tr><td>B</td><td>&nbsp;</td><td>0</td><td>3</td><td>8</td><td>6</td></tr> * <tr><td>C</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td><td>5</td><td>9</td></tr> * <tr><td>D</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td><td>4</td></tr> * <tr><td>E</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr> * </table> * </blockquote> * * The result of complete-link clustering is the following dendrogram: * * <pre> *         A   B   C   D   E *         |   |   |   |   | *      1  -----   |   |   | *      2    |     |   |   | *      3    -------   |   | *      4       |      ----- *      5       |        | *      6       |        | *      7       |        | *      8       |        | *      9       ---------- * </pre> * * <P>First, the objects <code>A</code> and <code>B</code> are merged at * distance one.  At distance 3, the object <code>C</code> is merged * with the cluster <code>{A,B}</code> because * <code>max(distance(C,A),distance(C,B))=3</code>, and that is * smaller than any other pair of distances.  Next, <code>D</code> * and <code>E</code> are merged at distance 4, because that is the * distance between them, and they are both further than 4 away from * the cluster <code>{A,B,C}</code>.  This continues with one more * step, which happens at distance 9, the distance between <code>C</code> * and <code>E</code>, which is the maximum distance between pairs drawn from * <code>{A,B,C}</code> and <code>{D,E}</code>. * * <P>The various clusters at each distance bound threshold are: * * <blockquote> * <table border='1' cellpadding='5'> * <tr><td><i>Threshold Range</i></td><td><i>Clusters</i></td></tr> * <tr><td>[Double.NEGATIVE_INFINITY,1)</td><td>{A}, {B}, {C}, {D}, {E} * <tr><td>[1,3)</td><td> {A,B}, {C}, {D}, {E}</td></tr> * <tr><td>[3,4)</td><td>{A,B,C}, {D}, {E}</td></tr> * <tr><td>[4,9)</td><td>{A,B,C}, {D,E}</td></tr> * <tr><td>[9,Double.POSITIVE_INFINITY]</td><td>{A,B,C,D,E}</td></tr> * </table> * </blockquote> * * The intervals show the clusters returned for thresholds within * the specified interval.  As usual, square brackets denote inclusive * range bounds and round brackets exclusive bounds.  Although this example * has the same single-link clustering, see the class documentation in * {@link SingleLinkClusterer} for an example that does not. * * <P>Note that results may not be well-defined in the case of ties * between proximities.  If there are ties, there is no guarantee * as to how this implementation will break the tie. * * <P><i>Implementation Note:</i> This algorithm requires worst-case * <code><i>O</i>(n<sup><sup>3</sup></sup>)</code> running time to cluster * <code>n</code> elements.  The initialization loop considers all pairs * of elements, thus requiring <code>n<sup><sup>2</sup></sup></code> * running time.  The main loop then walks over these pairs, requiring * up to <code>n</code> steps each to compute new distances.  If the * initial array of pairs is heavily pruned, the outer loop is smaller * and the updates are actually smaller, too. * * @author Bob Carpenter * @version 3.1.1 * @since   LingPipe2.0 */public class CompleteLinkClusterer<E>    extends AbstractHierarchicalClusterer<E> {    /**     * Construct a complete link clusterer with the specified distance     * bound.     *     * @param maxDistance Maximum distance between pairs of     * clusters to allow clustering.     */    public CompleteLinkClusterer(double maxDistance,                                 Distance<? super E> distance) {        super(maxDistance,distance);    }    /**     * Construct a complete link clusterer with no distance bound.     * This constructor uses {@link Double#POSITIVE_INFINITY} as the     * bound value, which effectively makes clustering unbounded.     */    public CompleteLinkClusterer(Distance<? super E> distance) {        this(Double.POSITIVE_INFINITY,distance);    }    public Dendrogram<E> hierarchicalCluster(Set<? extends E> elementSet) {        if (elementSet.size() == 0) {            String msg = "Require non-empty set to form dendrogram."                + " Found elementSet.size()=" + elementSet.size();            throw new IllegalArgumentException(msg);        }        if (elementSet.size() == 1)            return new LeafDendrogram<E>(elementSet.iterator().next());        // create queue (reverse because lower is better for distances)        BoundedPriorityQueue<PairScore<E>> queue            = new BoundedPriorityQueue<PairScore<E>>(Scored.REVERSE_SCORE_COMPARATOR,                                                     Integer.MAX_VALUE);        ObjectToSet<Dendrogram<E>,PairScore<E>> index            = new ObjectToSet<Dendrogram<E>,PairScore<E>>();        Object[] elements = toElements(elementSet);        LeafDendrogram<E>[] leafs            = (LeafDendrogram<E>[]) new LeafDendrogram[elements.length];        for (int i = 0; i < leafs.length; ++i)            leafs[i] = new LeafDendrogram<E>((E)elements[i]);        double maxDistance = getMaxDistance();        for (int i = 0; i < elements.length; ++i) {            E eI = (E) elements[i];            LeafDendrogram<E> dI = leafs[i];            for (int j = i + 1; j < elements.length; ++j) {                E eJ = (E) elements[j];                double score = distance().distance(eI,eJ);                if (score > maxDistance) continue;                LeafDendrogram<E> dJ = leafs[j];                PairScore<E> psIJ = new PairScore<E>(dI,dJ,score);                queue.add(psIJ);                index.addMember(dI,psIJ);                index.addMember(dJ,psIJ);            }        }        while (queue.size() > 0) { // (index.keySet().size() > 1 && queue.size() > 0) {            PairScore<E> next = queue.pop();            Dendrogram dendro1 = next.mDendrogram1.dereference();            Dendrogram dendro2 = next.mDendrogram2.dereference();            double dist12 = next.score();            LinkDendrogram dendro12                = new LinkDendrogram(dendro1,dendro2,dist12);            // remove & store distances to dendro1            HashMap<Dendrogram<E>,Double> distanceBuf                = new HashMap<Dendrogram<E>,Double>();            Set<PairScore<E>> ps3Set = index.remove(dendro1);            queue.removeAll(ps3Set);            for (PairScore<E> ps3 : ps3Set) {                Dendrogram dendro3                    = ps3.mDendrogram1 == dendro1                    ? ps3.mDendrogram2                    : ps3.mDendrogram1;                index.get(dendro3).remove(ps3);                double dist1_3 = ps3.score();                distanceBuf.put(dendro3,new Double(dist1_3));            }            // remove & iterate over distances to dendro2            ps3Set = index.remove(dendro2);            queue.removeAll(ps3Set);            for (PairScore<E> ps3 : ps3Set) {                Dendrogram dendro3                    = ps3.mDendrogram1 == dendro2                    ? ps3.mDendrogram2                    : ps3.mDendrogram1;                index.get(dendro3).remove(ps3);                Double dist1_3D = distanceBuf.get(dendro3);                if (dist1_3D == null) continue; // dist(dendro2,dendro3) too large                double dist1_3 = dist1_3D.doubleValue();                double dist2_3 = ps3.score();                double dist12_3 = Math.max(dist1_3,dist2_3);                PairScore<E> ps = new PairScore<E>(dendro12,dendro3,dist12_3);                queue.add(ps);                index.addMember(dendro12,ps);                index.addMember(dendro3,ps);            }            // dendro3 must be linked above threshold            // by both dendro1 and dendro2            if (queue.isEmpty()) return dendro12;        }        // share following code with Single Link        Iterator<Dendrogram<E>> it = index.keySet().iterator();        Dendrogram<E> dendro = it.next();        while (it.hasNext())            dendro = new LinkDendrogram<E>(dendro,it.next(),                                           Double.POSITIVE_INFINITY);        return dendro;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -