⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 classifierevaluator.java

📁 一个自然语言处理的Java开源工具包。LingPipe目前已有很丰富的功能
💻 JAVA
📖 第 1 页 / 共 3 页
字号:
/* * LingPipe v. 3.5 * Copyright (C) 2003-2008 Alias-i * * This program is licensed under the Alias-i Royalty Free License * Version 1 WITHOUT ANY WARRANTY, without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the Alias-i * Royalty Free License Version 1 for more details. *  * You should have received a copy of the Alias-i Royalty Free License * Version 1 along with this program; if not, visit * http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt or contact * Alias-i, Inc. at 181 North 11th Street, Suite 401, Brooklyn, NY 11211, * +1 (718) 290-9170. */package com.aliasi.classify;import com.aliasi.corpus.ClassificationHandler;import com.aliasi.util.Collections;import com.aliasi.util.Scored;import java.util.ArrayList;import java.util.HashSet;import java.util.List;/** * A <code>ClassifierEvaluator</code> provides an evaluation harness * for classifiers.  An evaluator is constructed from a classifier and * a complete list of the categories returned by the classifier.  Test * cases are then added using the {@link #addCase(String,Object)} * which accepts a string-based category and object to classify.  The * evaluator will run the classifier over the input object and collect * results over multiple cases. Depending on the classification types * returned by the classifier, various report statistics are * available. * * <P>An exhaustive set of evaluation metrics for first-best * classification results is accessbile as a confusion matrix through * the {@link #confusionMatrix()} method.  Confusion matrices provide * dozens of statistics on classification which can be computed from * first-best results; see {@link ConfusionMatrix} for more * information. *  * <P>Depending on the class of return results for the classifier * being evaluated, the following methods are supported: * * <blockquote> * <table border='1' cellpadding='5'> * <tr><td><i>Classifier Return Class</i></td> *     <td><i>Supported Methods</i></td></tr> * <tr><td><code>Classification</code></td> *     <td><table cellpadding='5'> *           <tr><td>{@link #confusionMatrix()}</td></tr> *         </table> *     </td></tr> * <tr><td><code>RankedClassification</code></td> *     <td><table cellpadding='5'> *           <tr><td>{@link #rankCount(String,int)}</td></tr> *           <tr><td>{@link #averageRankReference()}</td></tr> *           <tr><td>{@link #meanReciprocalRank()}</td></tr> *           <tr><td>{@link #averageRank(String,String)}</td></tr> *         </table> *     </td></tr> * <tr><td><code>ScoredClassification</code></td> *     <td><table cellpadding='5'> *           <tr><td>{@link #scoredOneVersusAll(String)}</td></tr> *           <tr><td>{@link #averageScore(String,String)}</td></tr> *           <tr><td>{@link #averageScoreReference()}</td></tr> *         </table> *     </td></tr> * <tr><td><code>ConditionalClassification</code></td> *     <td><table cellpadding='5'> *           <tr><td>{@link #averageConditionalProbability(String,String)}</td></tr> *           <tr><td>{@link #averageConditionalProbabilityReference()}</td></tr> *         </table> *     </td></tr> * <tr><td><code>JointClassification</code></td> *     <td><table cellpadding='5'> *           <tr><td>{@link #averageLog2JointProbability(String,String)}</td></tr> *           <tr><td>{@link #averageLog2JointProbabilityReference()}</td></tr> *         </table> *     </td></tr> * </table> * </blockquote> * * <P>If the input is a ranked classification and the reference * category does not appear at some rank in the classification, * results will be returned as if the reference category appeared in * the last possible rank in the ranked classification.  This * heuristic for scoring applies to all four methods listed for ranked * classifications in the table above.  As a consequence, the results * of {@link #averageRank(String,String)} might not be such as they * could be derived by a set of ranked classifications, because we are * assuming that all unlisted categories have the worst possible rank. * * <P>This class requires concurrent read and synchronous write * synchronization.  Reads are any of the statistics gathering methods * and write is just adding new test cases. * * <h4>Incomplete Rankings, Scorings and Conditionals</h4> * * <p>Some classifiers might not return a rank, score or conditional * probability estimate for every input.  In this case, the counts for * existing categories are still updated, but flags are set indicating * that values are missing.  If any ranked, scored or conditional * classification missed a rank, score or conditonal probability estimate * for a category, the corresponding method will return true, * {@link #missingRankings()},  * {@link #missingScorings()}, or * {@link #missingConditionals()} *  * @author  Bob Carpenter * @version 3.5 * @since   LingPipe2.0 */public class ClassifierEvaluator<E,C extends Classification>     implements ClassificationHandler<E,Classification> {    boolean mDefectiveRanking = false;    boolean mDefectiveScoring = false;    boolean mDefectiveConditioning = false;    // Classification    final Classifier<E,C> mClassifier;    private final ConfusionMatrix mConfusionMatrix;    private int mNumCases = 0;    final String[] mCategories;    final HashSet mCategorySet;    // paired inputs and outputs    final ArrayList mReferenceCategories = new ArrayList();    final ArrayList mClassifications = new ArrayList();    // RankedClassification    private boolean mHasRanked = false;    private final int[][] mRankCounts;    // ScoredClassification    private boolean mHasScored = false;    private final ArrayList[] mScoreOutcomeLists;    // ConditionalClassification    private boolean mHasConditional = false;    private final ArrayList[] mConditionalOutcomeLists;    // JointClassification    private boolean mHasJoint = false;    /**     * Construct a classifier evaluator for the specified classifier     * that records results for the specified set of categories.     *     * <P>If the classifier evaluator is only going to be populated     * using the {@link #addClassification(String,Classification)}     * method, then the classifier may be null.     *     * @param classifier Classifier to evaluate.     * @param categories Categories of the classifier.     */    public ClassifierEvaluator(Classifier<E,C> classifier, String[] categories) {        // Classification        mClassifier = classifier;        mCategories = categories;        mCategorySet = new HashSet();        Collections.addAll(mCategorySet,categories);        mConfusionMatrix = new ConfusionMatrix(categories);        // RankedClassification        int len = categories.length;        mRankCounts = new int[len][len];        for (int i = 0; i < len; ++i)            for (int j = 0; j < len; ++j)                mRankCounts[i][j] = 0;        // Scored        mScoreOutcomeLists = new ArrayList[numCategories()];        for (int i = 0; i < mScoreOutcomeLists.length; ++i)            mScoreOutcomeLists[i] = new ArrayList();        // Conditional        mConditionalOutcomeLists = new ArrayList[numCategories()];        for (int i = 0; i < mConditionalOutcomeLists.length; ++i)            mConditionalOutcomeLists[i] = new ArrayList();            // Joint    }    /**     * Returns the classifier for this evaluator.     *     * @return The classifier for this evaluator.     */    public Classifier<E,C> classifier() {        return mClassifier;    }    /**     * Returns the categories for which this evaluator stores     * results.     *     * @return The categories for which this evaluator stores     * results.     */    public String[] categories() {        return mCategories;    }    /**     * Adds a test case for the specified input with the specified     * reference category.  This method runs the classifer over     * the specified input.  It then stores the resulting classification     * and reference category for collective reporting.     *     * <P>This method simply applies the classifier specified at     * construction time to the specified input to produce a     * classification which is forwarded to {@link     * #addClassification(String,Classification)}.     *     * @param referenceCategory Correct category for object.     * @param input Object being classified.     * @throws IllegalArgumentException If the reference category is     * not a category for this evaluator.     */    public void addCase(String referenceCategory, E input) {        validateCategory(referenceCategory);        Classification classification = mClassifier.classify(input);        addClassification(referenceCategory,classification);    }    /**     * This is a convenience implementation for the classification     * handler interface.  It merely delegates to {@link     * #addCase(String,Object)} by extracting the best category from     * the specified classification.     *     * @param input Object being evaluated.     * @param classification Reference classification of object.     */    public void handle(E input, Classification classification) {	addCase(classification.bestCategory(),input);    }    /**     * Returns the number of test cases which have been provided     * to this evaluator.     *     * @return The number of test cases which have been provided     * to this evaluator.     */    public int numCases() {        return mNumCases;    }    /**     * Returns the confusion matrix of first-best classification     * result statistics for this evaluator.  See {@link     * ConfusionMatrix} for details of the numerous available     * evaluation metrics provided by confusion matrices.     *     * @return The confusion matrix for the test cases evaluated so far.     */    public ConfusionMatrix confusionMatrix() {        return mConfusionMatrix;    }    /**     * Returns <code>true</code> if this evaluation involved ranked     * classifications that did not rank every category.     *     * @return <code>true</code> if categories were unranked in     * some ranked classification.     */    public boolean missingRankings() {        return mDefectiveRanking;    }    /**     * Returns <code>true</code> if this evaluation involved ranked     * classifications that did not score every category.     *     * @return <code>true</code> if categories were unscored in     * some scored classification.     */    public boolean missingScorings() {        return mDefectiveScoring;    }    /**     * Returns <code>true</code> if this evaluation involved conditional     * classifications that did not score every category.     *     * @return <code>true</code> if categories were missing conditional     * probability estimates in some conditional classification.     */    public boolean missingConditionals() {        return mDefectiveScoring;    }    /**     * Returns the number of times that the reference category's     * rank was the specified rank.       *     * <P>For example, in the set of training samples and results     * described in the method documentation for {@link     * #averageRank(String,String)}, sample rank counts are as     * follows:     *     * <blockquote><code>     * rankCount(&quot;a&quot;,0) = 3     * <br>rankCount(&quot;a&quot;,1) = 1     * <br>rankCount(&quot;a&quot;,2) = 0     * <br> &nbsp;     * <br>rankCount(&quot;b&quot;,0) = 1     * <br>rankCount(&quot;b&quot;,1) = 0     * <br>rankCount(&quot;b&quot;,2) = 1     * <br> &nbsp;     * <br>rankCount(&quot;c&quot;,0) = 1     * <br>rankCount(&quot;c&quot;,1) = 0     * <br>rankCount(&quot;c&quot;,2) = 0     * </code></blockquote>     *     * These results are typically presented as a bar graph histogram     * per category.     *      * @param referenceCategory Reference category.     * @param rank Rank of count.     * @return Number of times the reference category's ranking was     * the specified rank.     * @throws IllegalArgumentException If the category is unknown.     */    public int rankCount(String referenceCategory, int rank) {        validateCategory(referenceCategory);        int i = categoryToIndex(referenceCategory);        return rankCount(i,rank);    }    /**     * Returns the average over all test samples of the rank of     * the the response that matches the reference category.     *     * <P>Using the example classifications shown in the method     * documentation of {@link #averageRank(String,String)}:     *     * <blockquote><code>     * averageRankReference()      * <br> = (0 + 0 + 0 + 1 + 0 + 2 + 0)/7 ~ 0.43     * </code></blockquote>     *

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -