⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 abstracthmmestimator.java

📁 一个自然语言处理的Java开源工具包。LingPipe目前已有很丰富的功能
💻 JAVA
字号:
/* * LingPipe v. 3.5 * Copyright (C) 2003-2008 Alias-i * * This program is licensed under the Alias-i Royalty Free License * Version 1 WITHOUT ANY WARRANTY, without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the Alias-i * Royalty Free License Version 1 for more details. * * You should have received a copy of the Alias-i Royalty Free License * Version 1 along with this program; if not, visit * http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt or contact * Alias-i, Inc. at 181 North 11th Street, Suite 401, Brooklyn, NY 11211, * +1 (718) 290-9170. */package com.aliasi.hmm;import com.aliasi.corpus.TagHandler;import com.aliasi.symbol.SymbolTable;import com.aliasi.util.Compilable;import java.io.IOException;import java.io.ObjectOutput;/** * An <code>HmmEstimator</code> may be used to train a hidden Markov * model (HMM).  Training events are supplied through the {@link * TagHandler} interface method {@link * #handle(String[],String[],String[])}.  The estimator implements an * HMM, so is suitable for use in a tag-a-little, learn-a-little * environment or elswhere when an adaptive HMM is required. * At any point, the estimator may be compiled to an object output * stream using {@link #compileTo(ObjectOutput)}.   *  * @author  Bob Carpenter * @version 2.4.1 * @since   LingPipe2.1 */public abstract class AbstractHmmEstimator     extends AbstractHmm    implements TagHandler, Compilable {    private long mNumTrainingTokens = 0;    private long mNumTrainingTaggings = 0;    /**     * Construct an HMM estimator with the specified tag symbol table.     *     * @param table Symbol table for tags.     */    public AbstractHmmEstimator(SymbolTable table) {        super(table);    }    /**     * Train the start state estimator with the specified start state.     * This increases the likelihood that the specified state will be     * the state of the first token.     *     * @param state State being trained.     */    public abstract void trainStart(String state);    /**     * Train the end state estimator with the specified end state.     * This increases the likelihood that the specified state will be     * the state of the last token.     *     * @param state State being trained.     */    public abstract void trainEnd(String state);    /**     * Trains the transition estimator from the specified transition     * from the specified source state to the specified target state.     *     * @param sourceState State from which the transition is made.     * @param targetState State to which the transition is made.     */    public abstract void         trainTransit(String sourceState, String targetState);    /**     * Train the emission estimator with the specified training     * instance consisting of a state and emission.  This method may     * be used for dictionary-based training for a particular state.     *     * @param state State being trained.     * @param emission Emission from state being trained.     */    public abstract void trainEmit(String state, CharSequence emission);    /**     * Compiles a copy of this estimated HMM to the specified object     * output.  Reading in the resulting bytes with an object input     * will produce an instance of {@link HiddenMarkovModel}, but will     * most likely not be an instance of the same class as the object     * being compiled.     *     * @param objOut Object output to which this estimator is     * compiled.     * @throws IOException If there is an I/O exception compiling this     * object.     */    public abstract void compileTo(ObjectOutput objOut) throws IOException;    /**     * Return the number of taggings handled.  This is simply     * the number of times {@link #handle(String[],String[],String[])}     * has been called.     *     * @return The number of taggings handled for training.     */    public long numTrainingCases() {        return mNumTrainingTaggings;    }    /**     * Returns the number of tokens handled for training.  This is the     * sum of the length of token arrays in all calls to the {@link     * #handle(String[],String[],String[])} method.     *     * @return The number of tokens handled for training.     */    public long numTrainingTokens() {        return mNumTrainingTokens;    }    /**     * Train the estimator with the specified tokens, whitespaces and     * states.  The whitespaces are ignored.     *     * <P>For a specified set of tags and tokens, this method calls:     * <UL>     * <LI> {@link #trainTransit(String,String)}     * on each tag pair,      * <LI>{@link #trainEmit(String,CharSequence)} on     * each tag/token pair,     * <LI>  {@link #trainStart(String)} on the first tag, and     * <LI>  {@link #trainEnd(String)} on the last tag.     * </UL>     *     * @param toks Tokens making up the emissions of the HMM states.     * @param whitespaces Whitespaces between tokens; ignored.     * @param tags Tags making up the states of the HMM.     */    public void handle(String[] toks, String[] whitespaces, String[] tags) {        ++mNumTrainingTaggings;        mNumTrainingTokens += toks.length;        if (toks.length < 1) return;        trainStart(tags[0]);        for (int i = 0; i < toks.length; ++i) {            trainEmit(tags[i],toks[i]);            if (i > 0) trainTransit(tags[i-1],tags[i]);        }        trainEnd(tags[tags.length-1]);    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -