📄 first_nios2_system.v
字号:
output cpu_0_instruction_master_latency_counter;
output [ 31: 0] cpu_0_instruction_master_readdata;
output cpu_0_instruction_master_readdatavalid;
output cpu_0_instruction_master_waitrequest;
input clk;
input [ 13: 0] cpu_0_instruction_master_address;
input cpu_0_instruction_master_granted_cpu_0_jtag_debug_module;
input cpu_0_instruction_master_granted_onchip_RAM_s1;
input cpu_0_instruction_master_granted_onchip_ROM_s1;
input cpu_0_instruction_master_qualified_request_cpu_0_jtag_debug_module;
input cpu_0_instruction_master_qualified_request_onchip_RAM_s1;
input cpu_0_instruction_master_qualified_request_onchip_ROM_s1;
input cpu_0_instruction_master_read;
input cpu_0_instruction_master_read_data_valid_cpu_0_jtag_debug_module;
input cpu_0_instruction_master_read_data_valid_onchip_RAM_s1;
input cpu_0_instruction_master_read_data_valid_onchip_ROM_s1;
input cpu_0_instruction_master_requests_cpu_0_jtag_debug_module;
input cpu_0_instruction_master_requests_onchip_RAM_s1;
input cpu_0_instruction_master_requests_onchip_ROM_s1;
input [ 31: 0] cpu_0_jtag_debug_module_readdata_from_sa;
input d1_cpu_0_jtag_debug_module_end_xfer;
input d1_onchip_RAM_s1_end_xfer;
input d1_onchip_ROM_s1_end_xfer;
input [ 31: 0] onchip_RAM_s1_readdata_from_sa;
input [ 31: 0] onchip_ROM_s1_readdata_from_sa;
input reset_n;
reg active_and_waiting_last_time;
reg [ 13: 0] cpu_0_instruction_master_address_last_time;
wire [ 13: 0] cpu_0_instruction_master_address_to_slave;
wire cpu_0_instruction_master_is_granted_some_slave;
reg cpu_0_instruction_master_latency_counter;
reg cpu_0_instruction_master_read_but_no_slave_selected;
reg cpu_0_instruction_master_read_last_time;
wire [ 31: 0] cpu_0_instruction_master_readdata;
wire cpu_0_instruction_master_readdatavalid;
wire cpu_0_instruction_master_run;
wire cpu_0_instruction_master_waitrequest;
wire latency_load_value;
wire p1_cpu_0_instruction_master_latency_counter;
wire pre_flush_cpu_0_instruction_master_readdatavalid;
wire r_0;
//r_0 master_run cascaded wait assignment, which is an e_assign
assign r_0 = 1 & (cpu_0_instruction_master_qualified_request_cpu_0_jtag_debug_module | ~cpu_0_instruction_master_requests_cpu_0_jtag_debug_module) & (cpu_0_instruction_master_granted_cpu_0_jtag_debug_module | ~cpu_0_instruction_master_qualified_request_cpu_0_jtag_debug_module) & ((~cpu_0_instruction_master_qualified_request_cpu_0_jtag_debug_module | ~cpu_0_instruction_master_read | (1 & ~d1_cpu_0_jtag_debug_module_end_xfer & cpu_0_instruction_master_read))) & 1 & (cpu_0_instruction_master_qualified_request_onchip_RAM_s1 | ~cpu_0_instruction_master_requests_onchip_RAM_s1) & (cpu_0_instruction_master_granted_onchip_RAM_s1 | ~cpu_0_instruction_master_qualified_request_onchip_RAM_s1) & ((~cpu_0_instruction_master_qualified_request_onchip_RAM_s1 | ~cpu_0_instruction_master_read | (1 & cpu_0_instruction_master_read))) & 1 & (cpu_0_instruction_master_qualified_request_onchip_ROM_s1 | ~cpu_0_instruction_master_requests_onchip_ROM_s1) & (cpu_0_instruction_master_granted_onchip_ROM_s1 | ~cpu_0_instruction_master_qualified_request_onchip_ROM_s1) & ((~cpu_0_instruction_master_qualified_request_onchip_ROM_s1 | ~cpu_0_instruction_master_read | (1 & cpu_0_instruction_master_read)));
//cascaded wait assignment, which is an e_assign
assign cpu_0_instruction_master_run = r_0;
//optimize select-logic by passing only those address bits which matter.
assign cpu_0_instruction_master_address_to_slave = cpu_0_instruction_master_address[13 : 0];
//cpu_0_instruction_master_read_but_no_slave_selected assignment, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
cpu_0_instruction_master_read_but_no_slave_selected <= 0;
else if (1)
cpu_0_instruction_master_read_but_no_slave_selected <= cpu_0_instruction_master_read & cpu_0_instruction_master_run & ~cpu_0_instruction_master_is_granted_some_slave;
end
//some slave is getting selected, which is an e_mux
assign cpu_0_instruction_master_is_granted_some_slave = cpu_0_instruction_master_granted_cpu_0_jtag_debug_module |
cpu_0_instruction_master_granted_onchip_RAM_s1 |
cpu_0_instruction_master_granted_onchip_ROM_s1;
//latent slave read data valids which may be flushed, which is an e_mux
assign pre_flush_cpu_0_instruction_master_readdatavalid = cpu_0_instruction_master_read_data_valid_onchip_RAM_s1 |
cpu_0_instruction_master_read_data_valid_onchip_ROM_s1;
//latent slave read data valid which is not flushed, which is an e_mux
assign cpu_0_instruction_master_readdatavalid = cpu_0_instruction_master_read_but_no_slave_selected |
pre_flush_cpu_0_instruction_master_readdatavalid |
cpu_0_instruction_master_read_data_valid_cpu_0_jtag_debug_module |
cpu_0_instruction_master_read_but_no_slave_selected |
pre_flush_cpu_0_instruction_master_readdatavalid |
cpu_0_instruction_master_read_but_no_slave_selected |
pre_flush_cpu_0_instruction_master_readdatavalid;
//cpu_0/instruction_master readdata mux, which is an e_mux
assign cpu_0_instruction_master_readdata = ({32 {~(cpu_0_instruction_master_qualified_request_cpu_0_jtag_debug_module & cpu_0_instruction_master_read)}} | cpu_0_jtag_debug_module_readdata_from_sa) &
({32 {~cpu_0_instruction_master_read_data_valid_onchip_RAM_s1}} | onchip_RAM_s1_readdata_from_sa) &
({32 {~cpu_0_instruction_master_read_data_valid_onchip_ROM_s1}} | onchip_ROM_s1_readdata_from_sa);
//actual waitrequest port, which is an e_assign
assign cpu_0_instruction_master_waitrequest = ~cpu_0_instruction_master_run;
//latent max counter, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
cpu_0_instruction_master_latency_counter <= 0;
else if (1)
cpu_0_instruction_master_latency_counter <= p1_cpu_0_instruction_master_latency_counter;
end
//latency counter load mux, which is an e_mux
assign p1_cpu_0_instruction_master_latency_counter = ((cpu_0_instruction_master_run & cpu_0_instruction_master_read))? latency_load_value :
(cpu_0_instruction_master_latency_counter)? cpu_0_instruction_master_latency_counter - 1 :
0;
//read latency load values, which is an e_mux
assign latency_load_value = ({1 {cpu_0_instruction_master_requests_onchip_RAM_s1}} & 1) |
({1 {cpu_0_instruction_master_requests_onchip_ROM_s1}} & 1);
//synthesis translate_off
//////////////// SIMULATION-ONLY CONTENTS
//cpu_0_instruction_master_address check against wait, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
cpu_0_instruction_master_address_last_time <= 0;
else if (1)
cpu_0_instruction_master_address_last_time <= cpu_0_instruction_master_address;
end
//cpu_0/instruction_master waited last time, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
active_and_waiting_last_time <= 0;
else if (1)
active_and_waiting_last_time <= cpu_0_instruction_master_waitrequest & (cpu_0_instruction_master_read);
end
//cpu_0_instruction_master_address matches last port_name, which is an e_process
always @(active_and_waiting_last_time or cpu_0_instruction_master_address or cpu_0_instruction_master_address_last_time)
begin
if (active_and_waiting_last_time & (cpu_0_instruction_master_address != cpu_0_instruction_master_address_last_time))
begin
$write("%0d ns: cpu_0_instruction_master_address did not heed wait!!!", $time);
$stop;
end
end
//cpu_0_instruction_master_read check against wait, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
cpu_0_instruction_master_read_last_time <= 0;
else if (1)
cpu_0_instruction_master_read_last_time <= cpu_0_instruction_master_read;
end
//cpu_0_instruction_master_read matches last port_name, which is an e_process
always @(active_and_waiting_last_time or cpu_0_instruction_master_read or cpu_0_instruction_master_read_last_time)
begin
if (active_and_waiting_last_time & (cpu_0_instruction_master_read != cpu_0_instruction_master_read_last_time))
begin
$write("%0d ns: cpu_0_instruction_master_read did not heed wait!!!", $time);
$stop;
end
end
//////////////// END SIMULATION-ONLY CONTENTS
//synthesis translate_on
endmodule
// turn off superfluous verilog processor warnings
// altera message_level Level1
// altera message_off 10034 10035 10036 10037 10230 10240 10030
module onchip_RAM_s1_arbitrator (
// inputs:
clk,
cpu_0_data_master_address_to_slave,
cpu_0_data_master_byteenable,
cpu_0_data_master_read,
cpu_0_data_master_waitrequest,
cpu_0_data_master_write,
cpu_0_data_master_writedata,
cpu_0_instruction_master_address_to_slave,
cpu_0_instruction_master_latency_counter,
cpu_0_instruction_master_read,
onchip_RAM_s1_readdata,
reset_n,
// outputs:
cpu_0_data_master_granted_onchip_RAM_s1,
cpu_0_data_master_qualified_request_onchip_RAM_s1,
cpu_0_data_master_read_data_valid_onchip_RAM_s1,
cpu_0_data_master_requests_onchip_RAM_s1,
cpu_0_instruction_master_granted_onchip_RAM_s1,
cpu_0_instruction_master_qualified_request_onchip_RAM_s1,
cpu_0_instruction_master_read_data_valid_onchip_RAM_s1,
cpu_0_instruction_master_requests_onchip_RAM_s1,
d1_onchip_RAM_s1_end_xfer,
onchip_RAM_s1_address,
onchip_RAM_s1_byteenable,
onchip_RAM_s1_chipselect,
onchip_RAM_s1_clken,
onchip_RAM_s1_readdata_from_sa,
onchip_RAM_s1_write,
onchip_RAM_s1_writedata,
registered_cpu_0_data_master_read_data_valid_onchip_RAM_s1
)
/* synthesis auto_dissolve = "FALSE" */ ;
output cpu_0_data_master_granted_onchip_RAM_s1;
output cpu_0_data_master_qualified_request_onchip_RAM_s1;
output cpu_0_data_master_read_data_valid_onchip_RAM_s1;
output cpu_0_data_master_requests_onchip_RAM_s1;
output cpu_0_instruction_master_granted_onchip_RAM_s1;
output cpu_0_instruction_master_qualified_request_onchip_RAM_s1;
output cpu_0_instruction_master_read_data_valid_onchip_RAM_s1;
output cpu_0_instruction_master_requests_onchip_RAM_s1;
output d1_onchip_RAM_s1_end_xfer;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -