⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 first_nios2_system.v

📁 最简单的nios例程
💻 V
📖 第 1 页 / 共 5 页
字号:
  output           cpu_0_instruction_master_latency_counter;
  output  [ 31: 0] cpu_0_instruction_master_readdata;
  output           cpu_0_instruction_master_readdatavalid;
  output           cpu_0_instruction_master_waitrequest;
  input            clk;
  input   [ 13: 0] cpu_0_instruction_master_address;
  input            cpu_0_instruction_master_granted_cpu_0_jtag_debug_module;
  input            cpu_0_instruction_master_granted_onchip_RAM_s1;
  input            cpu_0_instruction_master_granted_onchip_ROM_s1;
  input            cpu_0_instruction_master_qualified_request_cpu_0_jtag_debug_module;
  input            cpu_0_instruction_master_qualified_request_onchip_RAM_s1;
  input            cpu_0_instruction_master_qualified_request_onchip_ROM_s1;
  input            cpu_0_instruction_master_read;
  input            cpu_0_instruction_master_read_data_valid_cpu_0_jtag_debug_module;
  input            cpu_0_instruction_master_read_data_valid_onchip_RAM_s1;
  input            cpu_0_instruction_master_read_data_valid_onchip_ROM_s1;
  input            cpu_0_instruction_master_requests_cpu_0_jtag_debug_module;
  input            cpu_0_instruction_master_requests_onchip_RAM_s1;
  input            cpu_0_instruction_master_requests_onchip_ROM_s1;
  input   [ 31: 0] cpu_0_jtag_debug_module_readdata_from_sa;
  input            d1_cpu_0_jtag_debug_module_end_xfer;
  input            d1_onchip_RAM_s1_end_xfer;
  input            d1_onchip_ROM_s1_end_xfer;
  input   [ 31: 0] onchip_RAM_s1_readdata_from_sa;
  input   [ 31: 0] onchip_ROM_s1_readdata_from_sa;
  input            reset_n;

  reg              active_and_waiting_last_time;
  reg     [ 13: 0] cpu_0_instruction_master_address_last_time;
  wire    [ 13: 0] cpu_0_instruction_master_address_to_slave;
  wire             cpu_0_instruction_master_is_granted_some_slave;
  reg              cpu_0_instruction_master_latency_counter;
  reg              cpu_0_instruction_master_read_but_no_slave_selected;
  reg              cpu_0_instruction_master_read_last_time;
  wire    [ 31: 0] cpu_0_instruction_master_readdata;
  wire             cpu_0_instruction_master_readdatavalid;
  wire             cpu_0_instruction_master_run;
  wire             cpu_0_instruction_master_waitrequest;
  wire             latency_load_value;
  wire             p1_cpu_0_instruction_master_latency_counter;
  wire             pre_flush_cpu_0_instruction_master_readdatavalid;
  wire             r_0;
  //r_0 master_run cascaded wait assignment, which is an e_assign
  assign r_0 = 1 & (cpu_0_instruction_master_qualified_request_cpu_0_jtag_debug_module | ~cpu_0_instruction_master_requests_cpu_0_jtag_debug_module) & (cpu_0_instruction_master_granted_cpu_0_jtag_debug_module | ~cpu_0_instruction_master_qualified_request_cpu_0_jtag_debug_module) & ((~cpu_0_instruction_master_qualified_request_cpu_0_jtag_debug_module | ~cpu_0_instruction_master_read | (1 & ~d1_cpu_0_jtag_debug_module_end_xfer & cpu_0_instruction_master_read))) & 1 & (cpu_0_instruction_master_qualified_request_onchip_RAM_s1 | ~cpu_0_instruction_master_requests_onchip_RAM_s1) & (cpu_0_instruction_master_granted_onchip_RAM_s1 | ~cpu_0_instruction_master_qualified_request_onchip_RAM_s1) & ((~cpu_0_instruction_master_qualified_request_onchip_RAM_s1 | ~cpu_0_instruction_master_read | (1 & cpu_0_instruction_master_read))) & 1 & (cpu_0_instruction_master_qualified_request_onchip_ROM_s1 | ~cpu_0_instruction_master_requests_onchip_ROM_s1) & (cpu_0_instruction_master_granted_onchip_ROM_s1 | ~cpu_0_instruction_master_qualified_request_onchip_ROM_s1) & ((~cpu_0_instruction_master_qualified_request_onchip_ROM_s1 | ~cpu_0_instruction_master_read | (1 & cpu_0_instruction_master_read)));

  //cascaded wait assignment, which is an e_assign
  assign cpu_0_instruction_master_run = r_0;

  //optimize select-logic by passing only those address bits which matter.
  assign cpu_0_instruction_master_address_to_slave = cpu_0_instruction_master_address[13 : 0];

  //cpu_0_instruction_master_read_but_no_slave_selected assignment, which is an e_register
  always @(posedge clk or negedge reset_n)
    begin
      if (reset_n == 0)
          cpu_0_instruction_master_read_but_no_slave_selected <= 0;
      else if (1)
          cpu_0_instruction_master_read_but_no_slave_selected <= cpu_0_instruction_master_read & cpu_0_instruction_master_run & ~cpu_0_instruction_master_is_granted_some_slave;
    end


  //some slave is getting selected, which is an e_mux
  assign cpu_0_instruction_master_is_granted_some_slave = cpu_0_instruction_master_granted_cpu_0_jtag_debug_module |
    cpu_0_instruction_master_granted_onchip_RAM_s1 |
    cpu_0_instruction_master_granted_onchip_ROM_s1;

  //latent slave read data valids which may be flushed, which is an e_mux
  assign pre_flush_cpu_0_instruction_master_readdatavalid = cpu_0_instruction_master_read_data_valid_onchip_RAM_s1 |
    cpu_0_instruction_master_read_data_valid_onchip_ROM_s1;

  //latent slave read data valid which is not flushed, which is an e_mux
  assign cpu_0_instruction_master_readdatavalid = cpu_0_instruction_master_read_but_no_slave_selected |
    pre_flush_cpu_0_instruction_master_readdatavalid |
    cpu_0_instruction_master_read_data_valid_cpu_0_jtag_debug_module |
    cpu_0_instruction_master_read_but_no_slave_selected |
    pre_flush_cpu_0_instruction_master_readdatavalid |
    cpu_0_instruction_master_read_but_no_slave_selected |
    pre_flush_cpu_0_instruction_master_readdatavalid;

  //cpu_0/instruction_master readdata mux, which is an e_mux
  assign cpu_0_instruction_master_readdata = ({32 {~(cpu_0_instruction_master_qualified_request_cpu_0_jtag_debug_module & cpu_0_instruction_master_read)}} | cpu_0_jtag_debug_module_readdata_from_sa) &
    ({32 {~cpu_0_instruction_master_read_data_valid_onchip_RAM_s1}} | onchip_RAM_s1_readdata_from_sa) &
    ({32 {~cpu_0_instruction_master_read_data_valid_onchip_ROM_s1}} | onchip_ROM_s1_readdata_from_sa);

  //actual waitrequest port, which is an e_assign
  assign cpu_0_instruction_master_waitrequest = ~cpu_0_instruction_master_run;

  //latent max counter, which is an e_register
  always @(posedge clk or negedge reset_n)
    begin
      if (reset_n == 0)
          cpu_0_instruction_master_latency_counter <= 0;
      else if (1)
          cpu_0_instruction_master_latency_counter <= p1_cpu_0_instruction_master_latency_counter;
    end


  //latency counter load mux, which is an e_mux
  assign p1_cpu_0_instruction_master_latency_counter = ((cpu_0_instruction_master_run & cpu_0_instruction_master_read))? latency_load_value :
    (cpu_0_instruction_master_latency_counter)? cpu_0_instruction_master_latency_counter - 1 :
    0;

  //read latency load values, which is an e_mux
  assign latency_load_value = ({1 {cpu_0_instruction_master_requests_onchip_RAM_s1}} & 1) |
    ({1 {cpu_0_instruction_master_requests_onchip_ROM_s1}} & 1);


//synthesis translate_off
//////////////// SIMULATION-ONLY CONTENTS
  //cpu_0_instruction_master_address check against wait, which is an e_register
  always @(posedge clk or negedge reset_n)
    begin
      if (reset_n == 0)
          cpu_0_instruction_master_address_last_time <= 0;
      else if (1)
          cpu_0_instruction_master_address_last_time <= cpu_0_instruction_master_address;
    end


  //cpu_0/instruction_master waited last time, which is an e_register
  always @(posedge clk or negedge reset_n)
    begin
      if (reset_n == 0)
          active_and_waiting_last_time <= 0;
      else if (1)
          active_and_waiting_last_time <= cpu_0_instruction_master_waitrequest & (cpu_0_instruction_master_read);
    end


  //cpu_0_instruction_master_address matches last port_name, which is an e_process
  always @(active_and_waiting_last_time or cpu_0_instruction_master_address or cpu_0_instruction_master_address_last_time)
    begin
      if (active_and_waiting_last_time & (cpu_0_instruction_master_address != cpu_0_instruction_master_address_last_time))
        begin
          $write("%0d ns: cpu_0_instruction_master_address did not heed wait!!!", $time);
          $stop;
        end
    end


  //cpu_0_instruction_master_read check against wait, which is an e_register
  always @(posedge clk or negedge reset_n)
    begin
      if (reset_n == 0)
          cpu_0_instruction_master_read_last_time <= 0;
      else if (1)
          cpu_0_instruction_master_read_last_time <= cpu_0_instruction_master_read;
    end


  //cpu_0_instruction_master_read matches last port_name, which is an e_process
  always @(active_and_waiting_last_time or cpu_0_instruction_master_read or cpu_0_instruction_master_read_last_time)
    begin
      if (active_and_waiting_last_time & (cpu_0_instruction_master_read != cpu_0_instruction_master_read_last_time))
        begin
          $write("%0d ns: cpu_0_instruction_master_read did not heed wait!!!", $time);
          $stop;
        end
    end



//////////////// END SIMULATION-ONLY CONTENTS

//synthesis translate_on

endmodule



// turn off superfluous verilog processor warnings 
// altera message_level Level1 
// altera message_off 10034 10035 10036 10037 10230 10240 10030 

module onchip_RAM_s1_arbitrator (
                                  // inputs:
                                   clk,
                                   cpu_0_data_master_address_to_slave,
                                   cpu_0_data_master_byteenable,
                                   cpu_0_data_master_read,
                                   cpu_0_data_master_waitrequest,
                                   cpu_0_data_master_write,
                                   cpu_0_data_master_writedata,
                                   cpu_0_instruction_master_address_to_slave,
                                   cpu_0_instruction_master_latency_counter,
                                   cpu_0_instruction_master_read,
                                   onchip_RAM_s1_readdata,
                                   reset_n,

                                  // outputs:
                                   cpu_0_data_master_granted_onchip_RAM_s1,
                                   cpu_0_data_master_qualified_request_onchip_RAM_s1,
                                   cpu_0_data_master_read_data_valid_onchip_RAM_s1,
                                   cpu_0_data_master_requests_onchip_RAM_s1,
                                   cpu_0_instruction_master_granted_onchip_RAM_s1,
                                   cpu_0_instruction_master_qualified_request_onchip_RAM_s1,
                                   cpu_0_instruction_master_read_data_valid_onchip_RAM_s1,
                                   cpu_0_instruction_master_requests_onchip_RAM_s1,
                                   d1_onchip_RAM_s1_end_xfer,
                                   onchip_RAM_s1_address,
                                   onchip_RAM_s1_byteenable,
                                   onchip_RAM_s1_chipselect,
                                   onchip_RAM_s1_clken,
                                   onchip_RAM_s1_readdata_from_sa,
                                   onchip_RAM_s1_write,
                                   onchip_RAM_s1_writedata,
                                   registered_cpu_0_data_master_read_data_valid_onchip_RAM_s1
                                )
  /* synthesis auto_dissolve = "FALSE" */ ;

  output           cpu_0_data_master_granted_onchip_RAM_s1;
  output           cpu_0_data_master_qualified_request_onchip_RAM_s1;
  output           cpu_0_data_master_read_data_valid_onchip_RAM_s1;
  output           cpu_0_data_master_requests_onchip_RAM_s1;
  output           cpu_0_instruction_master_granted_onchip_RAM_s1;
  output           cpu_0_instruction_master_qualified_request_onchip_RAM_s1;
  output           cpu_0_instruction_master_read_data_valid_onchip_RAM_s1;
  output           cpu_0_instruction_master_requests_onchip_RAM_s1;
  output           d1_onchip_RAM_s1_end_xfer;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -