📄 agg_math_stroke.h
字号:
//----------------------------------------------------------------------------
// Anti-Grain Geometry (AGG) - Version 2.5
// A high quality rendering engine for C++
// Copyright (C) 2002-2006 Maxim Shemanarev
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://antigrain.com
//
// AGG is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// AGG is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with AGG; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
// MA 02110-1301, USA.
//----------------------------------------------------------------------------
#ifndef AGG_STROKE_MATH_INCLUDED
#define AGG_STROKE_MATH_INCLUDED
#include "agg_math.h"
#include "agg_vertex_sequence.h"
namespace agg
{
//-------------------------------------------------------------line_cap_e
enum line_cap_e
{
butt_cap,
square_cap,
round_cap
};
//------------------------------------------------------------line_join_e
enum line_join_e
{
miter_join = 0,
miter_join_revert = 1,
round_join = 2,
bevel_join = 3,
miter_join_round = 4
};
//-----------------------------------------------------------inner_join_e
enum inner_join_e
{
inner_bevel,
inner_miter,
inner_jag,
inner_round
};
//------------------------------------------------------------math_stroke
template<class VertexConsumer> class math_stroke
{
public:
typedef typename VertexConsumer::value_type coord_type;
math_stroke();
void line_cap(line_cap_e lc) { m_line_cap = lc; }
void line_join(line_join_e lj) { m_line_join = lj; }
void inner_join(inner_join_e ij) { m_inner_join = ij; }
line_cap_e line_cap() const { return m_line_cap; }
line_join_e line_join() const { return m_line_join; }
inner_join_e inner_join() const { return m_inner_join; }
void width(double w);
void miter_limit(double ml) { m_miter_limit = ml; }
void miter_limit_theta(double t);
void inner_miter_limit(double ml) { m_inner_miter_limit = ml; }
void approximation_scale(double as) { m_approx_scale = as; }
double width() const { return m_width * 2.0; }
double miter_limit() const { return m_miter_limit; }
double inner_miter_limit() const { return m_inner_miter_limit; }
double approximation_scale() const { return m_approx_scale; }
void calc_cap(VertexConsumer& vc,
const vertex_dist& v0,
const vertex_dist& v1,
double len);
void calc_join(VertexConsumer& vc,
const vertex_dist& v0,
const vertex_dist& v1,
const vertex_dist& v2,
double len1,
double len2);
private:
AGG_INLINE void add_vertex(VertexConsumer& vc, double x, double y)
{
vc.add(coord_type(x, y));
}
void calc_arc(VertexConsumer& vc,
double x, double y,
double dx1, double dy1,
double dx2, double dy2);
void calc_miter(VertexConsumer& vc,
const vertex_dist& v0,
const vertex_dist& v1,
const vertex_dist& v2,
double dx1, double dy1,
double dx2, double dy2,
line_join_e lj,
double mlimit,
double dbevel);
double m_width;
double m_width_abs;
double m_width_eps;
int m_width_sign;
double m_miter_limit;
double m_inner_miter_limit;
double m_approx_scale;
line_cap_e m_line_cap;
line_join_e m_line_join;
inner_join_e m_inner_join;
};
//-----------------------------------------------------------------------
template<class VC> math_stroke<VC>::math_stroke() :
m_width(0.5),
m_width_abs(0.5),
m_width_eps(0.5/1024.0),
m_width_sign(1),
m_miter_limit(4.0),
m_inner_miter_limit(1.01),
m_approx_scale(1.0),
m_line_cap(butt_cap),
m_line_join(miter_join),
m_inner_join(inner_miter)
{
}
//-----------------------------------------------------------------------
template<class VC> void math_stroke<VC>::width(double w)
{
m_width = w * 0.5;
if(m_width < 0)
{
m_width_abs = -m_width;
m_width_sign = -1;
}
else
{
m_width_abs = m_width;
m_width_sign = 1;
}
m_width_eps = m_width / 1024.0;
}
//-----------------------------------------------------------------------
template<class VC> void math_stroke<VC>::miter_limit_theta(double t)
{
m_miter_limit = 1.0 / sin(t * 0.5) ;
}
//-----------------------------------------------------------------------
template<class VC>
void math_stroke<VC>::calc_arc(VC& vc,
double x, double y,
double dx1, double dy1,
double dx2, double dy2)
{
double a1 = atan2(dy1 * m_width_sign, dx1 * m_width_sign);
double a2 = atan2(dy2 * m_width_sign, dx2 * m_width_sign);
double da = a1 - a2;
int i, n;
da = acos(m_width_abs / (m_width_abs + 0.125 / m_approx_scale)) * 2;
add_vertex(vc, x + dx1, y + dy1);
if(m_width_sign > 0)
{
if(a1 > a2) a2 += 2 * pi;
n = int((a2 - a1) / da);
da = (a2 - a1) / (n + 1);
a1 += da;
for(i = 0; i < n; i++)
{
add_vertex(vc, x + cos(a1) * m_width, y + sin(a1) * m_width);
a1 += da;
}
}
else
{
if(a1 < a2) a2 -= 2 * pi;
n = int((a1 - a2) / da);
da = (a1 - a2) / (n + 1);
a1 -= da;
for(i = 0; i < n; i++)
{
add_vertex(vc, x + cos(a1) * m_width, y + sin(a1) * m_width);
a1 -= da;
}
}
add_vertex(vc, x + dx2, y + dy2);
}
//-----------------------------------------------------------------------
template<class VC>
void math_stroke<VC>::calc_miter(VC& vc,
const vertex_dist& v0,
const vertex_dist& v1,
const vertex_dist& v2,
double dx1, double dy1,
double dx2, double dy2,
line_join_e lj,
double mlimit,
double dbevel)
{
double xi = v1.x;
double yi = v1.y;
double di = 1;
double lim = m_width_abs * mlimit;
bool miter_limit_exceeded = true; // Assume the worst
bool intersection_failed = true; // Assume the worst
if(calc_intersection(v0.x + dx1, v0.y - dy1,
v1.x + dx1, v1.y - dy1,
v1.x + dx2, v1.y - dy2,
v2.x + dx2, v2.y - dy2,
&xi, &yi))
{
// Calculation of the intersection succeeded
//---------------------
di = calc_distance(v1.x, v1.y, xi, yi);
if(di <= lim)
{
// Inside the miter limit
//---------------------
add_vertex(vc, xi, yi);
miter_limit_exceeded = false;
}
intersection_failed = false;
}
else
{
// Calculation of the intersection failed, most probably
// the three points lie one straight line.
// First check if v0 and v2 lie on the opposite sides of vector:
// (v1.x, v1.y) -> (v1.x+dx1, v1.y-dy1), that is, the perpendicular
// to the line determined by vertices v0 and v1.
// This condition determines whether the next line segments continues
// the previous one or goes back.
//----------------
double x2 = v1.x + dx1;
double y2 = v1.y - dy1;
if((cross_product(v0.x, v0.y, v1.x, v1.y, x2, y2) < 0.0) ==
(cross_product(v1.x, v1.y, v2.x, v2.y, x2, y2) < 0.0))
{
// This case means that the next segment continues
// the previous one (straight line)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -