📄 agg_array.h
字号:
//------------------------------------------------------------------------
template<class T, unsigned S>
void pod_bvector<T, S>::deserialize(unsigned start, const T& empty_val,
const int8u* data, unsigned byte_size)
{
while(m_size < start)
{
add(empty_val);
}
byte_size /= sizeof(T);
for(unsigned i = 0; i < byte_size; ++i)
{
if(start + i < m_size)
{
memcpy(&((*this)[start + i]), data, sizeof(T));
}
else
{
T* ptr = data_ptr();
memcpy(ptr, data, sizeof(T));
++m_size;
}
data += sizeof(T);
}
}
//---------------------------------------------------------block_allocator
// Allocator for arbitrary POD data. Most usable in different cache
// systems for efficient memory allocations.
// Memory is allocated with blocks of fixed size ("block_size" in
// the constructor). If required size exceeds the block size the allocator
// creates a new block of the required size. However, the most efficient
// use is when the average reqired size is much less than the block size.
//------------------------------------------------------------------------
class block_allocator
{
struct block_type
{
int8u* data;
unsigned size;
};
public:
void remove_all()
{
if(m_num_blocks)
{
block_type* blk = m_blocks + m_num_blocks - 1;
while(m_num_blocks--)
{
pod_allocator<int8u>::deallocate(blk->data, blk->size);
--blk;
}
pod_allocator<block_type>::deallocate(m_blocks, m_max_blocks);
}
m_num_blocks = 0;
m_max_blocks = 0;
m_blocks = 0;
m_buf_ptr = 0;
m_rest = 0;
}
~block_allocator()
{
remove_all();
}
block_allocator(unsigned block_size, unsigned block_ptr_inc=256-8) :
m_block_size(block_size),
m_block_ptr_inc(block_ptr_inc),
m_num_blocks(0),
m_max_blocks(0),
m_blocks(0),
m_buf_ptr(0),
m_rest(0)
{
}
int8u* allocate(unsigned size, unsigned alignment=1)
{
if(size == 0) return 0;
if(size <= m_rest)
{
int8u* ptr = m_buf_ptr;
if(alignment > 1)
{
unsigned align =
(alignment - unsigned((size_t)ptr) % alignment) % alignment;
size += align;
ptr += align;
if(size <= m_rest)
{
m_rest -= size;
m_buf_ptr += size;
return ptr;
}
allocate_block(size);
return allocate(size - align, alignment);
}
m_rest -= size;
m_buf_ptr += size;
return ptr;
}
allocate_block(size + alignment - 1);
return allocate(size, alignment);
}
private:
void allocate_block(unsigned size)
{
if(size < m_block_size) size = m_block_size;
if(m_num_blocks >= m_max_blocks)
{
block_type* new_blocks =
pod_allocator<block_type>::allocate(m_max_blocks + m_block_ptr_inc);
if(m_blocks)
{
memcpy(new_blocks,
m_blocks,
m_num_blocks * sizeof(block_type));
pod_allocator<block_type>::deallocate(m_blocks, m_max_blocks);
}
m_blocks = new_blocks;
m_max_blocks += m_block_ptr_inc;
}
m_blocks[m_num_blocks].size = size;
m_blocks[m_num_blocks].data =
m_buf_ptr =
pod_allocator<int8u>::allocate(size);
m_num_blocks++;
m_rest = size;
}
unsigned m_block_size;
unsigned m_block_ptr_inc;
unsigned m_num_blocks;
unsigned m_max_blocks;
block_type* m_blocks;
int8u* m_buf_ptr;
unsigned m_rest;
};
//------------------------------------------------------------------------
enum quick_sort_threshold_e
{
quick_sort_threshold = 9
};
//-----------------------------------------------------------swap_elements
template<class T> inline void swap_elements(T& a, T& b)
{
T temp = a;
a = b;
b = temp;
}
//--------------------------------------------------------------quick_sort
template<class Array, class Less>
void quick_sort(Array& arr, Less less)
{
if(arr.size() < 2) return;
typename Array::value_type* e1;
typename Array::value_type* e2;
int stack[80];
int* top = stack;
int limit = arr.size();
int base = 0;
for(;;)
{
int len = limit - base;
int i;
int j;
int pivot;
if(len > quick_sort_threshold)
{
// we use base + len/2 as the pivot
pivot = base + len / 2;
swap_elements(arr[base], arr[pivot]);
i = base + 1;
j = limit - 1;
// now ensure that *i <= *base <= *j
e1 = &(arr[j]);
e2 = &(arr[i]);
if(less(*e1, *e2)) swap_elements(*e1, *e2);
e1 = &(arr[base]);
e2 = &(arr[i]);
if(less(*e1, *e2)) swap_elements(*e1, *e2);
e1 = &(arr[j]);
e2 = &(arr[base]);
if(less(*e1, *e2)) swap_elements(*e1, *e2);
for(;;)
{
do i++; while( less(arr[i], arr[base]) );
do j--; while( less(arr[base], arr[j]) );
if( i > j )
{
break;
}
swap_elements(arr[i], arr[j]);
}
swap_elements(arr[base], arr[j]);
// now, push the largest sub-array
if(j - base > limit - i)
{
top[0] = base;
top[1] = j;
base = i;
}
else
{
top[0] = i;
top[1] = limit;
limit = j;
}
top += 2;
}
else
{
// the sub-array is small, perform insertion sort
j = base;
i = j + 1;
for(; i < limit; j = i, i++)
{
for(; less(*(e1 = &(arr[j + 1])), *(e2 = &(arr[j]))); j--)
{
swap_elements(*e1, *e2);
if(j == base)
{
break;
}
}
}
if(top > stack)
{
top -= 2;
base = top[0];
limit = top[1];
}
else
{
break;
}
}
}
}
//------------------------------------------------------remove_duplicates
// Remove duplicates from a sorted array. It doesn't cut the
// tail of the array, it just returns the number of remaining elements.
//-----------------------------------------------------------------------
template<class Array, class Equal>
unsigned remove_duplicates(Array& arr, Equal equal)
{
if(arr.size() < 2) return arr.size();
unsigned i, j;
for(i = 1, j = 1; i < arr.size(); i++)
{
typename Array::value_type& e = arr[i];
if(!equal(e, arr[i - 1]))
{
arr[j++] = e;
}
}
return j;
}
//--------------------------------------------------------invert_container
template<class Array> void invert_container(Array& arr)
{
int i = 0;
int j = arr.size() - 1;
while(i < j)
{
swap_elements(arr[i++], arr[j--]);
}
}
//------------------------------------------------------binary_search_pos
template<class Array, class Value, class Less>
unsigned binary_search_pos(const Array& arr, const Value& val, Less less)
{
if(arr.size() == 0) return 0;
unsigned beg = 0;
unsigned end = arr.size() - 1;
if(less(val, arr[0])) return 0;
if(less(arr[end], val)) return end + 1;
while(end - beg > 1)
{
unsigned mid = (end + beg) >> 1;
if(less(val, arr[mid])) end = mid;
else beg = mid;
}
//if(beg <= 0 && less(val, arr[0])) return 0;
//if(end >= arr.size() - 1 && less(arr[end], val)) ++end;
return end;
}
//----------------------------------------------------------range_adaptor
template<class Array> class range_adaptor
{
public:
typedef typename Array::value_type value_type;
range_adaptor(Array& array, unsigned start, unsigned size) :
m_array(array), m_start(start), m_size(size)
{}
unsigned size() const { return m_size; }
const value_type& operator [] (unsigned i) const { return m_array[m_start + i]; }
value_type& operator [] (unsigned i) { return m_array[m_start + i]; }
const value_type& at(unsigned i) const { return m_array[m_start + i]; }
value_type& at(unsigned i) { return m_array[m_start + i]; }
value_type value_at(unsigned i) const { return m_array[m_start + i]; }
private:
Array& m_array;
unsigned m_start;
unsigned m_size;
};
//---------------------------------------------------------------int_less
inline bool int_less(int a, int b) { return a < b; }
//------------------------------------------------------------int_greater
inline bool int_greater(int a, int b) { return a > b; }
//----------------------------------------------------------unsigned_less
inline bool unsigned_less(unsigned a, unsigned b) { return a < b; }
//-------------------------------------------------------unsigned_greater
inline bool unsigned_greater(unsigned a, unsigned b) { return a > b; }
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -