📄 agg_math.h
字号:
*x++ = x3 + dx2; *y++ = y3 + dy2;
*x++ = x3 + dx3; *y++ = y3 + dy3;
*x++ = x1 + dx3; *y++ = y1 + dy3;
}
//------------------------------------------------------calc_triangle_area
AGG_INLINE double calc_triangle_area(double x1, double y1,
double x2, double y2,
double x3, double y3)
{
return (x1*y2 - x2*y1 + x2*y3 - x3*y2 + x3*y1 - x1*y3) * 0.5;
}
//-------------------------------------------------------calc_polygon_area
template<class Storage> double calc_polygon_area(const Storage& st)
{
unsigned i;
double sum = 0.0;
double x = st[0].x;
double y = st[0].y;
double xs = x;
double ys = y;
for(i = 1; i < st.size(); i++)
{
const typename Storage::value_type& v = st[i];
sum += x * v.y - y * v.x;
x = v.x;
y = v.y;
}
return (sum + x * ys - y * xs) * 0.5;
}
//------------------------------------------------------------------------
// Tables for fast sqrt
extern int16u g_sqrt_table[1024];
extern int8 g_elder_bit_table[256];
//---------------------------------------------------------------fast_sqrt
//Fast integer Sqrt - really fast: no cycles, divisions or multiplications
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable : 4035) //Disable warning "no return value"
#endif
AGG_INLINE unsigned fast_sqrt(unsigned val)
{
#if defined(_M_IX86) && defined(_MSC_VER) && !defined(AGG_NO_ASM)
//For Ix86 family processors this assembler code is used.
//The key command here is bsr - determination the number of the most
//significant bit of the value. For other processors
//(and maybe compilers) the pure C "#else" section is used.
__asm
{
mov ebx, val
mov edx, 11
bsr ecx, ebx
sub ecx, 9
jle less_than_9_bits
shr ecx, 1
adc ecx, 0
sub edx, ecx
shl ecx, 1
shr ebx, cl
less_than_9_bits:
xor eax, eax
mov ax, g_sqrt_table[ebx*2]
mov ecx, edx
shr eax, cl
}
#else
//This code is actually pure C and portable to most
//arcitectures including 64bit ones.
unsigned t = val;
int bit=0;
unsigned shift = 11;
//The following piece of code is just an emulation of the
//Ix86 assembler command "bsr" (see above). However on old
//Intels (like Intel MMX 233MHz) this code is about twice
//faster (sic!) then just one "bsr". On PIII and PIV the
//bsr is optimized quite well.
bit = t >> 24;
if(bit)
{
bit = g_elder_bit_table[bit] + 24;
}
else
{
bit = (t >> 16) & 0xFF;
if(bit)
{
bit = g_elder_bit_table[bit] + 16;
}
else
{
bit = (t >> 8) & 0xFF;
if(bit)
{
bit = g_elder_bit_table[bit] + 8;
}
else
{
bit = g_elder_bit_table[t];
}
}
}
//This code calculates the sqrt.
bit -= 9;
if(bit > 0)
{
bit = (bit >> 1) + (bit & 1);
shift -= bit;
val >>= (bit << 1);
}
return g_sqrt_table[val] >> shift;
#endif
}
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
//--------------------------------------------------------------------besj
// Function BESJ calculates Bessel function of first kind of order n
// Arguments:
// n - an integer (>=0), the order
// x - value at which the Bessel function is required
//--------------------
// C++ Mathematical Library
// Convereted from equivalent FORTRAN library
// Converetd by Gareth Walker for use by course 392 computational project
// All functions tested and yield the same results as the corresponding
// FORTRAN versions.
//
// If you have any problems using these functions please report them to
// M.Muldoon@UMIST.ac.uk
//
// Documentation available on the web
// http://www.ma.umist.ac.uk/mrm/Teaching/392/libs/392.html
// Version 1.0 8/98
// 29 October, 1999
//--------------------
// Adapted for use in AGG library by Andy Wilk (castor.vulgaris@gmail.com)
//------------------------------------------------------------------------
inline double besj(double x, int n)
{
if(n < 0)
{
return 0;
}
double d = 1E-6;
double b = 0;
if(fabs(x) <= d)
{
if(n != 0) return 0;
return 1;
}
double b1 = 0; // b1 is the value from the previous iteration
// Set up a starting order for recurrence
int m1 = (int)fabs(x) + 6;
if(fabs(x) > 5)
{
m1 = (int)(fabs(1.4 * x + 60 / x));
}
int m2 = (int)(n + 2 + fabs(x) / 4);
if (m1 > m2)
{
m2 = m1;
}
// Apply recurrence down from curent max order
for(;;)
{
double c3 = 0;
double c2 = 1E-30;
double c4 = 0;
int m8 = 1;
if (m2 / 2 * 2 == m2)
{
m8 = -1;
}
int imax = m2 - 2;
for (int i = 1; i <= imax; i++)
{
double c6 = 2 * (m2 - i) * c2 / x - c3;
c3 = c2;
c2 = c6;
if(m2 - i - 1 == n)
{
b = c6;
}
m8 = -1 * m8;
if (m8 > 0)
{
c4 = c4 + 2 * c6;
}
}
double c6 = 2 * c2 / x - c3;
if(n == 0)
{
b = c6;
}
c4 += c6;
b /= c4;
if(fabs(b - b1) < d)
{
return b;
}
b1 = b;
m2 += 3;
}
}
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -