📄 agg_math.h
字号:
//----------------------------------------------------------------------------
// Anti-Grain Geometry (AGG) - Version 2.5
// A high quality rendering engine for C++
// Copyright (C) 2002-2006 Maxim Shemanarev
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://antigrain.com
//
// AGG is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// AGG is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with AGG; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
// MA 02110-1301, USA.
//----------------------------------------------------------------------------
// Bessel function (besj) was adapted for use in AGG library by Andy Wilk
// Contact: castor.vulgaris@gmail.com
//----------------------------------------------------------------------------
#ifndef AGG_MATH_INCLUDED
#define AGG_MATH_INCLUDED
#include <math.h>
#include "agg_basics.h"
namespace agg
{
//------------------------------------------------------vertex_dist_epsilon
// Coinciding points maximal distance (Epsilon)
const double vertex_dist_epsilon = 1e-14;
//-----------------------------------------------------intersection_epsilon
// See calc_intersection
const double intersection_epsilon = 1.0e-30;
//------------------------------------------------------------cross_product
AGG_INLINE double cross_product(double x1, double y1,
double x2, double y2,
double x, double y)
{
return (x - x2) * (y2 - y1) - (y - y2) * (x2 - x1);
}
//--------------------------------------------------------point_in_triangle
AGG_INLINE bool point_in_triangle(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x, double y)
{
bool cp1 = cross_product(x1, y1, x2, y2, x, y) < 0.0;
bool cp2 = cross_product(x2, y2, x3, y3, x, y) < 0.0;
bool cp3 = cross_product(x3, y3, x1, y1, x, y) < 0.0;
return cp1 == cp2 && cp2 == cp3 && cp3 == cp1;
}
//-----------------------------------------------------------calc_distance
AGG_INLINE double calc_distance(double x1, double y1, double x2, double y2)
{
double dx = x2-x1;
double dy = y2-y1;
return sqrt(dx * dx + dy * dy);
}
//--------------------------------------------------------calc_sq_distance
AGG_INLINE double calc_sq_distance(double x1, double y1, double x2, double y2)
{
double dx = x2-x1;
double dy = y2-y1;
return dx * dx + dy * dy;
}
//------------------------------------------------calc_line_point_distance
AGG_INLINE double calc_line_point_distance(double x1, double y1,
double x2, double y2,
double x, double y)
{
double dx = x2-x1;
double dy = y2-y1;
double d = sqrt(dx * dx + dy * dy);
if(d < vertex_dist_epsilon)
{
return calc_distance(x1, y1, x, y);
}
return ((x - x2) * dy - (y - y2) * dx) / d;
}
//-------------------------------------------------------calc_line_point_u
AGG_INLINE double calc_segment_point_u(double x1, double y1,
double x2, double y2,
double x, double y)
{
double dx = x2 - x1;
double dy = y2 - y1;
if(dx == 0 && dy == 0)
{
return 0;
}
double pdx = x - x1;
double pdy = y - y1;
return (pdx * dx + pdy * dy) / (dx * dx + dy * dy);
}
//---------------------------------------------calc_line_point_sq_distance
AGG_INLINE double calc_segment_point_sq_distance(double x1, double y1,
double x2, double y2,
double x, double y,
double u)
{
if(u <= 0)
{
return calc_sq_distance(x, y, x1, y1);
}
else
if(u >= 1)
{
return calc_sq_distance(x, y, x2, y2);
}
return calc_sq_distance(x, y, x1 + u * (x2 - x1), y1 + u * (y2 - y1));
}
//---------------------------------------------calc_line_point_sq_distance
AGG_INLINE double calc_segment_point_sq_distance(double x1, double y1,
double x2, double y2,
double x, double y)
{
return
calc_segment_point_sq_distance(
x1, y1, x2, y2, x, y,
calc_segment_point_u(x1, y1, x2, y2, x, y));
}
//-------------------------------------------------------calc_intersection
AGG_INLINE bool calc_intersection(double ax, double ay, double bx, double by,
double cx, double cy, double dx, double dy,
double* x, double* y)
{
double num = (ay-cy) * (dx-cx) - (ax-cx) * (dy-cy);
double den = (bx-ax) * (dy-cy) - (by-ay) * (dx-cx);
if(fabs(den) < intersection_epsilon) return false;
double r = num / den;
*x = ax + r * (bx-ax);
*y = ay + r * (by-ay);
return true;
}
//-----------------------------------------------------intersection_exists
AGG_INLINE bool intersection_exists(double x1, double y1, double x2, double y2,
double x3, double y3, double x4, double y4)
{
// It's less expensive but you can't control the
// boundary conditions: Less or LessEqual
double dx1 = x2 - x1;
double dy1 = y2 - y1;
double dx2 = x4 - x3;
double dy2 = y4 - y3;
return ((x3 - x2) * dy1 - (y3 - y2) * dx1 < 0.0) !=
((x4 - x2) * dy1 - (y4 - y2) * dx1 < 0.0) &&
((x1 - x4) * dy2 - (y1 - y4) * dx2 < 0.0) !=
((x2 - x4) * dy2 - (y2 - y4) * dx2 < 0.0);
// It's is more expensive but more flexible
// in terms of boundary conditions.
//--------------------
//double den = (x2-x1) * (y4-y3) - (y2-y1) * (x4-x3);
//if(fabs(den) < intersection_epsilon) return false;
//double nom1 = (x4-x3) * (y1-y3) - (y4-y3) * (x1-x3);
//double nom2 = (x2-x1) * (y1-y3) - (y2-y1) * (x1-x3);
//double ua = nom1 / den;
//double ub = nom2 / den;
//return ua >= 0.0 && ua <= 1.0 && ub >= 0.0 && ub <= 1.0;
}
//--------------------------------------------------------calc_orthogonal
AGG_INLINE void calc_orthogonal(double thickness,
double x1, double y1,
double x2, double y2,
double* x, double* y)
{
double dx = x2 - x1;
double dy = y2 - y1;
double d = sqrt(dx*dx + dy*dy);
*x = thickness * dy / d;
*y = -thickness * dx / d;
}
//--------------------------------------------------------dilate_triangle
AGG_INLINE void dilate_triangle(double x1, double y1,
double x2, double y2,
double x3, double y3,
double *x, double* y,
double d)
{
double dx1=0.0;
double dy1=0.0;
double dx2=0.0;
double dy2=0.0;
double dx3=0.0;
double dy3=0.0;
double loc = cross_product(x1, y1, x2, y2, x3, y3);
if(fabs(loc) > intersection_epsilon)
{
if(cross_product(x1, y1, x2, y2, x3, y3) > 0.0)
{
d = -d;
}
calc_orthogonal(d, x1, y1, x2, y2, &dx1, &dy1);
calc_orthogonal(d, x2, y2, x3, y3, &dx2, &dy2);
calc_orthogonal(d, x3, y3, x1, y1, &dx3, &dy3);
}
*x++ = x1 + dx1; *y++ = y1 + dy1;
*x++ = x2 + dx1; *y++ = y2 + dy1;
*x++ = x2 + dx2; *y++ = y2 + dy2;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -