📄 agg_trans_affine.h
字号:
//----------------------------------------------------------------------------
// Anti-Grain Geometry (AGG) - Version 2.5
// A high quality rendering engine for C++
// Copyright (C) 2002-2006 Maxim Shemanarev
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://antigrain.com
//
// AGG is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// AGG is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with AGG; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
// MA 02110-1301, USA.
//----------------------------------------------------------------------------
#ifndef AGG_TRANS_AFFINE_INCLUDED
#define AGG_TRANS_AFFINE_INCLUDED
#include <math.h>
#include "agg_basics.h"
namespace agg
{
const double affine_epsilon = 1e-14;
//============================================================trans_affine
//
// See Implementation agg_trans_affine.cpp
//
// Affine transformation are linear transformations in Cartesian coordinates
// (strictly speaking not only in Cartesian, but for the beginning we will
// think so). They are rotation, scaling, translation and skewing.
// After any affine transformation a line segment remains a line segment
// and it will never become a curve.
//
// There will be no math about matrix calculations, since it has been
// described many times. Ask yourself a very simple question:
// "why do we need to understand and use some matrix stuff instead of just
// rotating, scaling and so on". The answers are:
//
// 1. Any combination of transformations can be done by only 4 multiplications
// and 4 additions in floating point.
// 2. One matrix transformation is equivalent to the number of consecutive
// discrete transformations, i.e. the matrix "accumulates" all transformations
// in the order of their settings. Suppose we have 4 transformations:
// * rotate by 30 degrees,
// * scale X to 2.0,
// * scale Y to 1.5,
// * move to (100, 100).
// The result will depend on the order of these transformations,
// and the advantage of matrix is that the sequence of discret calls:
// rotate(30), scaleX(2.0), scaleY(1.5), move(100,100)
// will have exactly the same result as the following matrix transformations:
//
// affine_matrix m;
// m *= rotate_matrix(30);
// m *= scaleX_matrix(2.0);
// m *= scaleY_matrix(1.5);
// m *= move_matrix(100,100);
//
// m.transform_my_point_at_last(x, y);
//
// What is the good of it? In real life we will set-up the matrix only once
// and then transform many points, let alone the convenience to set any
// combination of transformations.
//
// So, how to use it? Very easy - literally as it's shown above. Not quite,
// let us write a correct example:
//
// agg::trans_affine m;
// m *= agg::trans_affine_rotation(30.0 * 3.1415926 / 180.0);
// m *= agg::trans_affine_scaling(2.0, 1.5);
// m *= agg::trans_affine_translation(100.0, 100.0);
// m.transform(&x, &y);
//
// The affine matrix is all you need to perform any linear transformation,
// but all transformations have origin point (0,0). It means that we need to
// use 2 translations if we want to rotate someting around (100,100):
//
// m *= agg::trans_affine_translation(-100.0, -100.0); // move to (0,0)
// m *= agg::trans_affine_rotation(30.0 * 3.1415926 / 180.0); // rotate
// m *= agg::trans_affine_translation(100.0, 100.0); // move back to (100,100)
//----------------------------------------------------------------------
struct trans_affine
{
double sx, shy, shx, sy, tx, ty;
//------------------------------------------ Construction
// Identity matrix
trans_affine() :
sx(1.0), shy(0.0), shx(0.0), sy(1.0), tx(0.0), ty(0.0)
{}
// Custom matrix. Usually used in derived classes
trans_affine(double v0, double v1, double v2,
double v3, double v4, double v5) :
sx(v0), shy(v1), shx(v2), sy(v3), tx(v4), ty(v5)
{}
// Custom matrix from m[6]
explicit trans_affine(const double* m) :
sx(m[0]), shy(m[1]), shx(m[2]), sy(m[3]), tx(m[4]), ty(m[5])
{}
// Rectangle to a parallelogram.
trans_affine(double x1, double y1, double x2, double y2,
const double* parl)
{
rect_to_parl(x1, y1, x2, y2, parl);
}
// Parallelogram to a rectangle.
trans_affine(const double* parl,
double x1, double y1, double x2, double y2)
{
parl_to_rect(parl, x1, y1, x2, y2);
}
// Arbitrary parallelogram transformation.
trans_affine(const double* src, const double* dst)
{
parl_to_parl(src, dst);
}
//---------------------------------- Parellelogram transformations
// transform a parallelogram to another one. Src and dst are
// pointers to arrays of three points (double[6], x1,y1,...) that
// identify three corners of the parallelograms assuming implicit
// fourth point. The arguments are arrays of double[6] mapped
// to x1,y1, x2,y2, x3,y3 where the coordinates are:
// *-----------------*
// / (x3,y3)/
// / /
// /(x1,y1) (x2,y2)/
// *-----------------*
const trans_affine& parl_to_parl(const double* src,
const double* dst);
const trans_affine& rect_to_parl(double x1, double y1,
double x2, double y2,
const double* parl);
const trans_affine& parl_to_rect(const double* parl,
double x1, double y1,
double x2, double y2);
//------------------------------------------ Operations
// Reset - load an identity matrix
const trans_affine& reset();
// Direct transformations operations
const trans_affine& translate(double x, double y);
const trans_affine& rotate(double a);
const trans_affine& scale(double s);
const trans_affine& scale(double x, double y);
// Multiply matrix to another one
const trans_affine& multiply(const trans_affine& m);
// Multiply "m" to "this" and assign the result to "this"
const trans_affine& premultiply(const trans_affine& m);
// Multiply matrix to inverse of another one
const trans_affine& multiply_inv(const trans_affine& m);
// Multiply inverse of "m" to "this" and assign the result to "this"
const trans_affine& premultiply_inv(const trans_affine& m);
// Invert matrix. Do not try to invert degenerate matrices,
// there's no check for validity. If you set scale to 0 and
// then try to invert matrix, expect unpredictable result.
const trans_affine& invert();
// Mirroring around X
const trans_affine& flip_x();
// Mirroring around Y
const trans_affine& flip_y();
//------------------------------------------- Load/Store
// Store matrix to an array [6] of double
void store_to(double* m) const
{
*m++ = sx; *m++ = shy; *m++ = shx; *m++ = sy; *m++ = tx; *m++ = ty;
}
// Load matrix from an array [6] of double
const trans_affine& load_from(const double* m)
{
sx = *m++; shy = *m++; shx = *m++; sy = *m++; tx = *m++; ty = *m++;
return *this;
}
//------------------------------------------- Operators
// Multiply the matrix by another one
const trans_affine& operator *= (const trans_affine& m)
{
return multiply(m);
}
// Multiply the matrix by inverse of another one
const trans_affine& operator /= (const trans_affine& m)
{
return multiply_inv(m);
}
// Multiply the matrix by another one and return
// the result in a separete matrix.
trans_affine operator * (const trans_affine& m)
{
return trans_affine(*this).multiply(m);
}
// Multiply the matrix by inverse of another one
// and return the result in a separete matrix.
trans_affine operator / (const trans_affine& m)
{
return trans_affine(*this).multiply_inv(m);
}
// Calculate and return the inverse matrix
trans_affine operator ~ () const
{
trans_affine ret = *this;
return ret.invert();
}
// Equal operator with default epsilon
bool operator == (const trans_affine& m) const
{
return is_equal(m, affine_epsilon);
}
// Not Equal operator with default epsilon
bool operator != (const trans_affine& m) const
{
return !is_equal(m, affine_epsilon);
}
//-------------------------------------------- Transformations
// Direct transformation of x and y
void transform(double* x, double* y) const;
// Direct transformation of x and y, 2x2 matrix only, no translation
void transform_2x2(double* x, double* y) const;
// Inverse transformation of x and y. It works slower than the
// direct transformation. For massive operations it's better to
// invert() the matrix and then use direct transformations.
void inverse_transform(double* x, double* y) const;
//-------------------------------------------- Auxiliary
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -