⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 wm4quaternion.inl

📁 windows ce 下的3D桌面
💻 INL
📖 第 1 页 / 共 2 页
字号:
template <class Real>
Quaternion<Real>& Quaternion<Real>::FromRotationMatrix (
    const Vector3<Real> akRotColumn[3])
{
    Matrix3<Real> kRot;
    for (int iCol = 0; iCol < 3; iCol++)
    {
        kRot(0,iCol) = akRotColumn[iCol][0];
        kRot(1,iCol) = akRotColumn[iCol][1];
        kRot(2,iCol) = akRotColumn[iCol][2];
    }
    return FromRotationMatrix(kRot);
}
//----------------------------------------------------------------------------
template <class Real>
void Quaternion<Real>::ToRotationMatrix (Vector3<Real> akRotColumn[3]) const
{
    Matrix3<Real> kRot;
    ToRotationMatrix(kRot);
    for (int iCol = 0; iCol < 3; iCol++)
    {
        akRotColumn[iCol][0] = kRot(0,iCol);
        akRotColumn[iCol][1] = kRot(1,iCol);
        akRotColumn[iCol][2] = kRot(2,iCol);
    }
}
//----------------------------------------------------------------------------
template <class Real>
Quaternion<Real>& Quaternion<Real>::FromAxisAngle (
    const Vector3<Real>& rkAxis, Real fAngle)
{
    // assert:  axis[] is unit length
    //
    // The quaternion representing the rotation is
    //   q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k)

    Real fHalfAngle = ((Real)0.5)*fAngle;
    Real fSin = Math<Real>::Sin(fHalfAngle);
    m_afTuple[0] = Math<Real>::Cos(fHalfAngle);
    m_afTuple[1] = fSin*rkAxis[0];
    m_afTuple[2] = fSin*rkAxis[1];
    m_afTuple[3] = fSin*rkAxis[2];

    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
void Quaternion<Real>::ToAxisAngle (Vector3<Real>& rkAxis, Real& rfAngle)
    const
{
    // The quaternion representing the rotation is
    //   q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k)

    Real fSqrLength = m_afTuple[1]*m_afTuple[1] + m_afTuple[2]*m_afTuple[2]
        + m_afTuple[3]*m_afTuple[3];

    if (fSqrLength > Math<Real>::ZERO_TOLERANCE)
    {
        rfAngle = ((Real)2.0)*Math<Real>::ACos(m_afTuple[0]);
        Real fInvLength = Math<Real>::InvSqrt(fSqrLength);
        rkAxis[0] = m_afTuple[1]*fInvLength;
        rkAxis[1] = m_afTuple[2]*fInvLength;
        rkAxis[2] = m_afTuple[3]*fInvLength;
    }
    else
    {
        // angle is 0 (mod 2*pi), so any axis will do
        rfAngle = (Real)0.0;
        rkAxis[0] = (Real)1.0;
        rkAxis[1] = (Real)0.0;
        rkAxis[2] = (Real)0.0;
    }
}
//----------------------------------------------------------------------------
template <class Real>
inline Real Quaternion<Real>::Length () const
{
    return Math<Real>::Sqrt(
        m_afTuple[0]*m_afTuple[0] +
        m_afTuple[1]*m_afTuple[1] +
        m_afTuple[2]*m_afTuple[2] +
        m_afTuple[3]*m_afTuple[3]);
}
//----------------------------------------------------------------------------
template <class Real>
inline Real Quaternion<Real>::SquaredLength () const
{
    return
        m_afTuple[0]*m_afTuple[0] +
        m_afTuple[1]*m_afTuple[1] +
        m_afTuple[2]*m_afTuple[2] +
        m_afTuple[3]*m_afTuple[3];
}
//----------------------------------------------------------------------------
template <class Real>
inline Real Quaternion<Real>::Dot (const Quaternion& rkQ) const
{
    Real fDot = (Real)0.0;
    for (int i = 0; i < 4; i++)
    {
        fDot += m_afTuple[i]*rkQ.m_afTuple[i];
    }
    return fDot;
}
//----------------------------------------------------------------------------
template <class Real>
inline Real Quaternion<Real>::Normalize ()
{
    Real fLength = Length();

    if (fLength > Math<Real>::ZERO_TOLERANCE)
    {
        Real fInvLength = ((Real)1.0)/fLength;
        m_afTuple[0] *= fInvLength;
        m_afTuple[1] *= fInvLength;
        m_afTuple[2] *= fInvLength;
        m_afTuple[3] *= fInvLength;
    }
    else
    {
        fLength = (Real)0.0;
        m_afTuple[0] = (Real)0.0;
        m_afTuple[1] = (Real)0.0;
        m_afTuple[2] = (Real)0.0;
        m_afTuple[3] = (Real)0.0;
    }

    return fLength;
}
//----------------------------------------------------------------------------
template <class Real>
Quaternion<Real> Quaternion<Real>::Inverse () const
{
    Quaternion kInverse;

    Real fNorm = (Real)0.0;
    int i;
    for (i = 0; i < 4; i++)
    {
        fNorm += m_afTuple[i]*m_afTuple[i];
    }

    if (fNorm > (Real)0.0)
    {
        Real fInvNorm = ((Real)1.0)/fNorm;
        kInverse.m_afTuple[0] = m_afTuple[0]*fInvNorm;
        kInverse.m_afTuple[1] = -m_afTuple[1]*fInvNorm;
        kInverse.m_afTuple[2] = -m_afTuple[2]*fInvNorm;
        kInverse.m_afTuple[3] = -m_afTuple[3]*fInvNorm;
    }
    else
    {
        // return an invalid result to flag the error
        for (i = 0; i < 4; i++)
        {
            kInverse.m_afTuple[i] = (Real)0.0;
        }
    }

    return kInverse;
}
//----------------------------------------------------------------------------
template <class Real>
Quaternion<Real> Quaternion<Real>::Conjugate () const
{
    return Quaternion(m_afTuple[0],-m_afTuple[1],-m_afTuple[2],
        -m_afTuple[3]);
}
//----------------------------------------------------------------------------
template <class Real>
Quaternion<Real> Quaternion<Real>::Exp () const
{
    // If q = A*(x*i+y*j+z*k) where (x,y,z) is unit length, then
    // exp(q) = cos(A)+sin(A)*(x*i+y*j+z*k).  If sin(A) is near zero,
    // use exp(q) = cos(A)+A*(x*i+y*j+z*k) since A/sin(A) has limit 1.

    Quaternion kResult;

    Real fAngle = Math<Real>::Sqrt(m_afTuple[1]*m_afTuple[1] +
        m_afTuple[2]*m_afTuple[2] + m_afTuple[3]*m_afTuple[3]);

    Real fSin = Math<Real>::Sin(fAngle);
    kResult.m_afTuple[0] = Math<Real>::Cos(fAngle);

    int i;

    if (Math<Real>::FAbs(fSin) >= Math<Real>::ZERO_TOLERANCE)
    {
        Real fCoeff = fSin/fAngle;
        for (i = 1; i <= 3; i++)
        {
            kResult.m_afTuple[i] = fCoeff*m_afTuple[i];
        }
    }
    else
    {
        for (i = 1; i <= 3; i++)
        {
            kResult.m_afTuple[i] = m_afTuple[i];
        }
    }

    return kResult;
}
//----------------------------------------------------------------------------
template <class Real>
Quaternion<Real> Quaternion<Real>::Log () const
{
    // If q = cos(A)+sin(A)*(x*i+y*j+z*k) where (x,y,z) is unit length, then
    // log(q) = A*(x*i+y*j+z*k).  If sin(A) is near zero, use log(q) =
    // sin(A)*(x*i+y*j+z*k) since sin(A)/A has limit 1.

    Quaternion kResult;
    kResult.m_afTuple[0] = (Real)0.0;

    int i;

    if (Math<Real>::FAbs(m_afTuple[0]) < (Real)1.0)
    {
        Real fAngle = Math<Real>::ACos(m_afTuple[0]);
        Real fSin = Math<Real>::Sin(fAngle);
        if (Math<Real>::FAbs(fSin) >= Math<Real>::ZERO_TOLERANCE)
        {
            Real fCoeff = fAngle/fSin;
            for (i = 1; i <= 3; i++)
            {
                kResult.m_afTuple[i] = fCoeff*m_afTuple[i];
            }
            return kResult;
        }
    }

    for (i = 1; i <= 3; i++)
    {
        kResult.m_afTuple[i] = m_afTuple[i];
    }
    return kResult;
}
//----------------------------------------------------------------------------
template <class Real>
Vector3<Real> Quaternion<Real>::Rotate (const Vector3<Real>& rkVector)
    const
{
    // Given a vector u = (x0,y0,z0) and a unit length quaternion
    // q = <w,x,y,z>, the vector v = (x1,y1,z1) which represents the
    // rotation of u by q is v = q*u*q^{-1} where * indicates quaternion
    // multiplication and where u is treated as the quaternion <0,x0,y0,z0>.
    // Note that q^{-1} = <w,-x,-y,-z>, so no real work is required to
    // invert q.  Now
    //
    //   q*u*q^{-1} = q*<0,x0,y0,z0>*q^{-1}
    //     = q*(x0*i+y0*j+z0*k)*q^{-1}
    //     = x0*(q*i*q^{-1})+y0*(q*j*q^{-1})+z0*(q*k*q^{-1})
    //
    // As 3-vectors, q*i*q^{-1}, q*j*q^{-1}, and 2*k*q^{-1} are the columns
    // of the rotation matrix computed in Quaternion<Real>::ToRotationMatrix.
    // The vector v is obtained as the product of that rotation matrix with
    // vector u.  As such, the quaternion representation of a rotation
    // matrix requires less space than the matrix and more time to compute
    // the rotated vector.  Typical space-time tradeoff...

    Matrix3<Real> kRot;
    ToRotationMatrix(kRot);
    return kRot*rkVector;
}
//----------------------------------------------------------------------------
template <class Real>
Quaternion<Real>& Quaternion<Real>::Slerp (Real fT, const Quaternion& rkP,
    const Quaternion& rkQ)
{
    Real fCos = rkP.Dot(rkQ);
    Real fAngle = Math<Real>::ACos(fCos);

    if (Math<Real>::FAbs(fAngle) >= Math<Real>::ZERO_TOLERANCE)
    {
        Real fSin = Math<Real>::Sin(fAngle);
        Real fInvSin = ((Real)1.0)/fSin;
        Real fCoeff0 = Math<Real>::Sin(((Real)1.0-fT)*fAngle)*fInvSin;
        Real fCoeff1 = Math<Real>::Sin(fT*fAngle)*fInvSin;
        *this = fCoeff0*rkP + fCoeff1*rkQ;
    }
    else
    {
        *this = rkP;
    }

    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
Quaternion<Real>& Quaternion<Real>::SlerpExtraSpins (Real fT,
    const Quaternion& rkP, const Quaternion& rkQ, int iExtraSpins)
{
    Real fCos = rkP.Dot(rkQ);
    Real fAngle = Math<Real>::ACos(fCos);

    if (Math<Real>::FAbs(fAngle) >= Math<Real>::ZERO_TOLERANCE)
    {
        Real fSin = Math<Real>::Sin(fAngle);
        Real fPhase = Math<Real>::PI*iExtraSpins*fT;
        Real fInvSin = ((Real)1.0)/fSin;
        Real fCoeff0 = Math<Real>::Sin(((Real)1.0-fT)*fAngle-fPhase)*fInvSin;
        Real fCoeff1 = Math<Real>::Sin(fT*fAngle + fPhase)*fInvSin;
        *this = fCoeff0*rkP + fCoeff1*rkQ;
    }
    else
    {
        *this = rkP;
    }

    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
Quaternion<Real>& Quaternion<Real>::Intermediate (const Quaternion& rkQ0,
    const Quaternion& rkQ1, const Quaternion& rkQ2)
{
    // assert:  Q0, Q1, Q2 all unit-length
    Quaternion kQ1Inv = rkQ1.Conjugate();
    Quaternion kP0 = kQ1Inv*rkQ0;
    Quaternion kP2 = kQ1Inv*rkQ2;
    Quaternion kArg = -((Real)0.25)*(kP0.Log()+kP2.Log());
    Quaternion kA = rkQ1*kArg.Exp();
    *this = kA;

    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
Quaternion<Real>& Quaternion<Real>::Squad (Real fT, const Quaternion& rkQ0,
    const Quaternion& rkA0, const Quaternion& rkA1, const Quaternion& rkQ1)
{
    Real fSlerpT = ((Real)2.0)*fT*((Real)1.0-fT);
    Quaternion kSlerpP = Slerp(fT,rkQ0,rkQ1);
    Quaternion kSlerpQ = Slerp(fT,rkA0,rkA1);
    return Slerp(fSlerpT,kSlerpP,kSlerpQ);
}
//----------------------------------------------------------------------------
template <class Real>
Quaternion<Real>& Quaternion<Real>::Align (const Vector3<Real>& rkV1,
    const Vector3<Real>& rkV2)
{
    // If V1 and V2 are not parallel, the axis of rotation is the unit-length
    // vector U = Cross(V1,V2)/Length(Cross(V1,V2)).  The angle of rotation,
    // A, is the angle between V1 and V2.  The quaternion for the rotation is
    // q = cos(A/2) + sin(A/2)*(ux*i+uy*j+uz*k) where U = (ux,uy,uz).
    //
    // (1) Rather than extract A = acos(Dot(V1,V2)), multiply by 1/2, then
    //     compute sin(A/2) and cos(A/2), we reduce the computational costs by
    //     computing the bisector B = (V1+V2)/Length(V1+V2), so cos(A/2) =
    //     Dot(V1,B).
    //
    // (2) The rotation axis is U = Cross(V1,B)/Length(Cross(V1,B)), but
    //     Length(Cross(V1,B)) = Length(V1)*Length(B)*sin(A/2) = sin(A/2), in
    //     which case sin(A/2)*(ux*i+uy*j+uz*k) = (cx*i+cy*j+cz*k) where
    //     C = Cross(V1,B).
    //
    // If V1 = V2, then B = V1, cos(A/2) = 1, and U = (0,0,0).  If V1 = -V2,
    // then B = 0.  This can happen even if V1 is approximately -V2 using
    // floating point arithmetic, since Vector3::Normalize checks for
    // closeness to zero and returns the zero vector accordingly.  The test
    // for exactly zero is usually not recommend for floating point
    // arithmetic, but the implementation of Vector3::Normalize guarantees
    // the comparison is robust.  In this case, the A = pi and any axis
    // perpendicular to V1 may be used as the rotation axis.

    Vector3<Real> kBisector = rkV1 + rkV2;
    kBisector.Normalize();

    Real fCosHalfAngle = rkV1.Dot(kBisector);
    Vector3<Real> kCross;

    m_afTuple[0] = fCosHalfAngle;

    if (fCosHalfAngle != (Real)0.0)
    {
        kCross = rkV1.Cross(kBisector);
        m_afTuple[1] = kCross.X();
        m_afTuple[2] = kCross.Y();
        m_afTuple[3] = kCross.Z();
    }
    else
    {
        Real fInvLength;
        if (Math<Real>::FAbs(rkV1[0]) >= Math<Real>::FAbs(rkV1[1]))
        {
            // V1.x or V1.z is the largest magnitude component
            fInvLength = Math<Real>::InvSqrt(rkV1[0]*rkV1[0] +
                rkV1[2]*rkV1[2]);

            m_afTuple[1] = -rkV1[2]*fInvLength;
            m_afTuple[2] = (Real)0.0;
            m_afTuple[3] = +rkV1[0]*fInvLength;
        }
        else
        {
            // V1.y or V1.z is the largest magnitude component
            fInvLength = Math<Real>::InvSqrt(rkV1[1]*rkV1[1] +
                rkV1[2]*rkV1[2]);

            m_afTuple[1] = (Real)0.0;
            m_afTuple[2] = +rkV1[2]*fInvLength;
            m_afTuple[3] = -rkV1[1]*fInvLength;
        }
    }

    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
void Quaternion<Real>::DecomposeTwistTimesSwing (
    const Vector3<Real>& rkV1, Quaternion& rkTwist, Quaternion& rkSwing)
{
    Vector3<Real> kV2 = Rotate(rkV1);
    rkSwing = Align(rkV1,kV2);
    rkTwist = (*this)*rkSwing.Conjugate();
}
//----------------------------------------------------------------------------
template <class Real>
void Quaternion<Real>::DecomposeSwingTimesTwist (
    const Vector3<Real>& rkV1, Quaternion& rkSwing, Quaternion& rkTwist)
{
    Vector3<Real> kV2 = Rotate(rkV1);
    rkSwing = Align(rkV1,kV2);
    rkTwist = rkSwing.Conjugate()*(*this);
}
//----------------------------------------------------------------------------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -