📄 wm4quaternion.h
字号:
// Wild Magic Source Code
// David Eberly
// http://www.geometrictools.com
// Copyright (c) 1998-2007
//
// This library is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation; either version 2.1 of the License, or (at
// your option) any later version. The license is available for reading at
// either of the locations:
// http://www.gnu.org/copyleft/lgpl.html
// http://www.geometrictools.com/License/WildMagicLicense.pdf
//
// Version: 4.0.1 (2007/03/07)
#ifndef WM4QUATERNION_H
#define WM4QUATERNION_H
#include "Wm4FoundationLIB.h"
#include "Wm4Matrix3.h"
namespace Wm4
{
template <class Real>
class Quaternion
{
public:
// A quaternion is q = w + x*i + y*j + z*k where (w,x,y,z) is not
// necessarily a unit length vector in 4D.
// construction
Quaternion (); // uninitialized
Quaternion (Real fW, Real fX, Real fY, Real fZ);
Quaternion (const Quaternion& rkQ);
// quaternion for the input rotation matrix
Quaternion (const Matrix3<Real>& rkRot);
// quaternion for the rotation of the axis-angle pair
Quaternion (const Vector3<Real>& rkAxis, Real fAngle);
// quaternion for the rotation matrix with specified columns
Quaternion (const Vector3<Real> akRotColumn[3]);
// member access: 0 = w, 1 = x, 2 = y, 3 = z
inline operator const Real* () const;
inline operator Real* ();
inline Real operator[] (int i) const;
inline Real& operator[] (int i);
inline Real W () const;
inline Real& W ();
inline Real X () const;
inline Real& X ();
inline Real Y () const;
inline Real& Y ();
inline Real Z () const;
inline Real& Z ();
// assignment
inline Quaternion& operator= (const Quaternion& rkQ);
// comparison
bool operator== (const Quaternion& rkQ) const;
bool operator!= (const Quaternion& rkQ) const;
bool operator< (const Quaternion& rkQ) const;
bool operator<= (const Quaternion& rkQ) const;
bool operator> (const Quaternion& rkQ) const;
bool operator>= (const Quaternion& rkQ) const;
// arithmetic operations
inline Quaternion operator+ (const Quaternion& rkQ) const;
inline Quaternion operator- (const Quaternion& rkQ) const;
inline Quaternion operator* (const Quaternion& rkQ) const;
inline Quaternion operator* (Real fScalar) const;
inline Quaternion operator/ (Real fScalar) const;
inline Quaternion operator- () const;
// arithmetic updates
inline Quaternion& operator+= (const Quaternion& rkQ);
inline Quaternion& operator-= (const Quaternion& rkQ);
inline Quaternion& operator*= (Real fScalar);
inline Quaternion& operator/= (Real fScalar);
// conversion between quaternions, matrices, and axis-angle
Quaternion& FromRotationMatrix (const Matrix3<Real>& rkRot);
void ToRotationMatrix (Matrix3<Real>& rkRot) const;
Quaternion& FromRotationMatrix (const Vector3<Real> akRotColumn[3]);
void ToRotationMatrix (Vector3<Real> akRotColumn[3]) const;
Quaternion& FromAxisAngle (const Vector3<Real>& rkAxis, Real fAngle);
void ToAxisAngle (Vector3<Real>& rkAxis, Real& rfAngle) const;
// functions of a quaternion
inline Real Length () const; // length of 4-tuple
inline Real SquaredLength () const; // squared length of 4-tuple
inline Real Dot (const Quaternion& rkQ) const; // dot product of 4-tuples
inline Real Normalize (); // make the 4-tuple unit length
Quaternion Inverse () const; // apply to non-zero quaternion
Quaternion Conjugate () const;
Quaternion Exp () const; // apply to quaternion with w = 0
Quaternion Log () const; // apply to unit-length quaternion
// rotation of a vector by a quaternion
Vector3<Real> Rotate (const Vector3<Real>& rkVector) const;
// spherical linear interpolation
Quaternion& Slerp (Real fT, const Quaternion& rkP, const Quaternion& rkQ);
Quaternion& SlerpExtraSpins (Real fT, const Quaternion& rkP,
const Quaternion& rkQ, int iExtraSpins);
// intermediate terms for spherical quadratic interpolation
Quaternion& Intermediate (const Quaternion& rkQ0,
const Quaternion& rkQ1, const Quaternion& rkQ2);
// spherical quadratic interpolation
Quaternion& Squad (Real fT, const Quaternion& rkQ0,
const Quaternion& rkA0, const Quaternion& rkA1,
const Quaternion& rkQ1);
// Compute a quaternion that rotates unit-length vector V1 to unit-length
// vector V2. The rotation is about the axis perpendicular to both V1 and
// V2, with angle of that between V1 and V2. If V1 and V2 are parallel,
// any axis of rotation will do, such as the permutation (z2,x2,y2), where
// V2 = (x2,y2,z2).
Quaternion& Align (const Vector3<Real>& rkV1, const Vector3<Real>& rkV2);
// Decompose a quaternion into q = q_twist * q_swing, where q is 'this'
// quaternion. If V1 is the input axis and V2 is the rotation of V1 by
// q, q_swing represents the rotation about the axis perpendicular to
// V1 and V2 (see Quaternion::Align), and q_twist is a rotation about V1.
void DecomposeTwistTimesSwing (const Vector3<Real>& rkV1,
Quaternion& rkTwist, Quaternion& rkSwing);
// Decompose a quaternion into q = q_swing * q_twist, where q is 'this'
// quaternion. If V1 is the input axis and V2 is the rotation of V1 by
// q, q_swing represents the rotation about the axis perpendicular to
// V1 and V2 (see Quaternion::Align), and q_twist is a rotation about V1.
void DecomposeSwingTimesTwist (const Vector3<Real>& rkV1,
Quaternion& rkSwing, Quaternion& rkTwist);
// special values
WM4_FOUNDATION_ITEM static const Quaternion IDENTITY;
WM4_FOUNDATION_ITEM static const Quaternion ZERO;
private:
// support for comparisons
int CompareArrays (const Quaternion& rkQ) const;
// support for FromRotationMatrix
WM4_FOUNDATION_ITEM static int ms_iNext[3];
Real m_afTuple[4];
};
template <class Real>
inline Quaternion<Real> operator* (Real fScalar, const Quaternion<Real>& rkQ);
#include "Wm4Quaternion.inl"
typedef Quaternion<float> Quaternionf;
typedef Quaternion<double> Quaterniond;
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -