📄 wm4vector3.inl
字号:
template <class Real>
void Vector3<Real>::GetBarycentrics (const Vector3<Real>& rkV0,
const Vector3<Real>& rkV1, const Vector3<Real>& rkV2,
const Vector3<Real>& rkV3, Real afBary[4]) const
{
// compute the vectors relative to V3 of the tetrahedron
Vector3<Real> akDiff[4] =
{
rkV0 - rkV3,
rkV1 - rkV3,
rkV2 - rkV3,
*this - rkV3
};
// If the vertices have large magnitude, the linear system of
// equations for computing barycentric coordinates can be
// ill-conditioned. To avoid this, uniformly scale the tetrahedron
// edges to be of order 1. The scaling of all differences does not
// change the barycentric coordinates.
Real fMax = (Real)0.0;
int i;
for (i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
Real fValue = Math<Real>::FAbs(akDiff[i][j]);
if (fValue > fMax)
{
fMax = fValue;
}
}
}
// scale down only large data
if (fMax > (Real)1.0)
{
Real fInvMax = ((Real)1.0)/fMax;
for (i = 0; i < 4; i++)
{
akDiff[i] *= fInvMax;
}
}
Real fDet = akDiff[0].Dot(akDiff[1].Cross(akDiff[2]));
Vector3<Real> kE1cE2 = akDiff[1].Cross(akDiff[2]);
Vector3<Real> kE2cE0 = akDiff[2].Cross(akDiff[0]);
Vector3<Real> kE0cE1 = akDiff[0].Cross(akDiff[1]);
if (Math<Real>::FAbs(fDet) > Math<Real>::ZERO_TOLERANCE)
{
Real fInvDet = ((Real)1.0)/fDet;
afBary[0] = akDiff[3].Dot(kE1cE2)*fInvDet;
afBary[1] = akDiff[3].Dot(kE2cE0)*fInvDet;
afBary[2] = akDiff[3].Dot(kE0cE1)*fInvDet;
afBary[3] = (Real)1.0 - afBary[0] - afBary[1] - afBary[2];
}
else
{
// The tetrahedron is potentially flat. Determine the face of
// maximum area and compute barycentric coordinates with respect
// to that face.
Vector3<Real> kE02 = rkV0 - rkV2;
Vector3<Real> kE12 = rkV1 - rkV2;
Vector3<Real> kE02cE12 = kE02.Cross(kE12);
Real fMaxSqrArea = kE02cE12.SquaredLength();
int iMaxIndex = 3;
Real fSqrArea = kE0cE1.SquaredLength();
if (fSqrArea > fMaxSqrArea)
{
iMaxIndex = 0;
fMaxSqrArea = fSqrArea;
}
fSqrArea = kE1cE2.SquaredLength();
if (fSqrArea > fMaxSqrArea)
{
iMaxIndex = 1;
fMaxSqrArea = fSqrArea;
}
fSqrArea = kE2cE0.SquaredLength();
if (fSqrArea > fMaxSqrArea)
{
iMaxIndex = 2;
fMaxSqrArea = fSqrArea;
}
if (fMaxSqrArea > Math<Real>::ZERO_TOLERANCE)
{
Real fInvSqrArea = ((Real)1.0)/fMaxSqrArea;
Vector3<Real> kTmp;
if (iMaxIndex == 0)
{
kTmp = akDiff[3].Cross(akDiff[1]);
afBary[0] = kE0cE1.Dot(kTmp)*fInvSqrArea;
kTmp = akDiff[0].Cross(akDiff[3]);
afBary[1] = kE0cE1.Dot(kTmp)*fInvSqrArea;
afBary[2] = (Real)0.0;
afBary[3] = (Real)1.0 - afBary[0] - afBary[1];
}
else if (iMaxIndex == 1)
{
afBary[0] = (Real)0.0;
kTmp = akDiff[3].Cross(akDiff[2]);
afBary[1] = kE1cE2.Dot(kTmp)*fInvSqrArea;
kTmp = akDiff[1].Cross(akDiff[3]);
afBary[2] = kE1cE2.Dot(kTmp)*fInvSqrArea;
afBary[3] = (Real)1.0 - afBary[1] - afBary[2];
}
else if (iMaxIndex == 2)
{
kTmp = akDiff[2].Cross(akDiff[3]);
afBary[0] = kE2cE0.Dot(kTmp)*fInvSqrArea;
afBary[1] = (Real)0.0;
kTmp = akDiff[3].Cross(akDiff[0]);
afBary[2] = kE2cE0.Dot(kTmp)*fInvSqrArea;
afBary[3] = (Real)1.0 - afBary[0] - afBary[2];
}
else
{
akDiff[3] = *this - rkV2;
kTmp = akDiff[3].Cross(kE12);
afBary[0] = kE02cE12.Dot(kTmp)*fInvSqrArea;
kTmp = kE02.Cross(akDiff[3]);
afBary[1] = kE02cE12.Dot(kTmp)*fInvSqrArea;
afBary[2] = (Real)1.0 - afBary[0] - afBary[1];
afBary[3] = (Real)0.0;
}
}
else
{
// The tetrahedron is potentially a sliver. Determine the edge of
// maximum length and compute barycentric coordinates with respect
// to that edge.
Real fMaxSqrLength = akDiff[0].SquaredLength();
iMaxIndex = 0; // <V0,V3>
Real fSqrLength = akDiff[1].SquaredLength();
if (fSqrLength > fMaxSqrLength)
{
iMaxIndex = 1; // <V1,V3>
fMaxSqrLength = fSqrLength;
}
fSqrLength = akDiff[2].SquaredLength();
if (fSqrLength > fMaxSqrLength)
{
iMaxIndex = 2; // <V2,V3>
fMaxSqrLength = fSqrLength;
}
fSqrLength = kE02.SquaredLength();
if (fSqrLength > fMaxSqrLength)
{
iMaxIndex = 3; // <V0,V2>
fMaxSqrLength = fSqrLength;
}
fSqrLength = kE12.SquaredLength();
if (fSqrLength > fMaxSqrLength)
{
iMaxIndex = 4; // <V1,V2>
fMaxSqrLength = fSqrLength;
}
Vector3<Real> kE01 = rkV0 - rkV1;
fSqrLength = kE01.SquaredLength();
if (fSqrLength > fMaxSqrLength)
{
iMaxIndex = 5; // <V0,V1>
fMaxSqrLength = fSqrLength;
}
if (fMaxSqrLength > Math<Real>::ZERO_TOLERANCE)
{
Real fInvSqrLength = ((Real)1.0)/fMaxSqrLength;
if (iMaxIndex == 0)
{
// P-V3 = t*(V0-V3)
afBary[0] = akDiff[3].Dot(akDiff[0])*fInvSqrLength;
afBary[1] = (Real)0.0;
afBary[2] = (Real)0.0;
afBary[3] = (Real)1.0 - afBary[0];
}
else if (iMaxIndex == 1)
{
// P-V3 = t*(V1-V3)
afBary[0] = (Real)0.0;
afBary[1] = akDiff[3].Dot(akDiff[1])*fInvSqrLength;
afBary[2] = (Real)0.0;
afBary[3] = (Real)1.0 - afBary[1];
}
else if (iMaxIndex == 2)
{
// P-V3 = t*(V2-V3)
afBary[0] = (Real)0.0;
afBary[1] = (Real)0.0;
afBary[2] = akDiff[3].Dot(akDiff[2])*fInvSqrLength;
afBary[3] = (Real)1.0 - afBary[2];
}
else if (iMaxIndex == 3)
{
// P-V2 = t*(V0-V2)
akDiff[3] = *this - rkV2;
afBary[0] = akDiff[3].Dot(kE02)*fInvSqrLength;
afBary[1] = (Real)0.0;
afBary[2] = (Real)1.0 - afBary[0];
afBary[3] = (Real)0.0;
}
else if (iMaxIndex == 4)
{
// P-V2 = t*(V1-V2)
akDiff[3] = *this - rkV2;
afBary[0] = (Real)0.0;
afBary[1] = akDiff[3].Dot(kE12)*fInvSqrLength;
afBary[2] = (Real)1.0 - afBary[1];
afBary[3] = (Real)0.0;
}
else
{
// P-V1 = t*(V0-V1)
akDiff[3] = *this - rkV1;
afBary[0] = akDiff[3].Dot(kE01)*fInvSqrLength;
afBary[1] = (Real)1.0 - afBary[0];
afBary[2] = (Real)0.0;
afBary[3] = (Real)0.0;
}
}
else
{
// tetrahedron is a nearly a point, just return equal weights
afBary[0] = (Real)0.25;
afBary[1] = afBary[0];
afBary[2] = afBary[0];
afBary[3] = afBary[0];
}
}
}
}
//----------------------------------------------------------------------------
template <class Real>
void Vector3<Real>::Orthonormalize (Vector3& rkU, Vector3& rkV, Vector3& rkW)
{
// If the input vectors are v0, v1, and v2, then the Gram-Schmidt
// orthonormalization produces vectors u0, u1, and u2 as follows,
//
// u0 = v0/|v0|
// u1 = (v1-(u0*v1)u0)/|v1-(u0*v1)u0|
// u2 = (v2-(u0*v2)u0-(u1*v2)u1)/|v2-(u0*v2)u0-(u1*v2)u1|
//
// where |A| indicates length of vector A and A*B indicates dot
// product of vectors A and B.
// compute u0
rkU.Normalize();
// compute u1
Real fDot0 = rkU.Dot(rkV);
rkV -= fDot0*rkU;
rkV.Normalize();
// compute u2
Real fDot1 = rkV.Dot(rkW);
fDot0 = rkU.Dot(rkW);
rkW -= fDot0*rkU + fDot1*rkV;
rkW.Normalize();
}
//----------------------------------------------------------------------------
template <class Real>
void Vector3<Real>::Orthonormalize (Vector3* akV)
{
Orthonormalize(akV[0],akV[1],akV[2]);
}
//----------------------------------------------------------------------------
template <class Real>
void Vector3<Real>::GenerateOrthonormalBasis (Vector3& rkU, Vector3& rkV,
Vector3& rkW)
{
rkW.Normalize();
GenerateComplementBasis(rkU,rkV,rkW);
}
//----------------------------------------------------------------------------
template <class Real>
void Vector3<Real>::GenerateComplementBasis (Vector3& rkU, Vector3& rkV,
const Vector3& rkW)
{
Real fInvLength;
if (Math<Real>::FAbs(rkW.m_afTuple[0]) >=
Math<Real>::FAbs(rkW.m_afTuple[1]) )
{
// W.x or W.z is the largest magnitude component, swap them
fInvLength = Math<Real>::InvSqrt(rkW.m_afTuple[0]*rkW.m_afTuple[0] +
rkW.m_afTuple[2]*rkW.m_afTuple[2]);
rkU.m_afTuple[0] = -rkW.m_afTuple[2]*fInvLength;
rkU.m_afTuple[1] = (Real)0.0;
rkU.m_afTuple[2] = +rkW.m_afTuple[0]*fInvLength;
rkV.m_afTuple[0] = rkW.m_afTuple[1]*rkU.m_afTuple[2];
rkV.m_afTuple[1] = rkW.m_afTuple[2]*rkU.m_afTuple[0] -
rkW.m_afTuple[0]*rkU.m_afTuple[2];
rkV.m_afTuple[2] = -rkW.m_afTuple[1]*rkU.m_afTuple[0];
}
else
{
// W.y or W.z is the largest magnitude component, swap them
fInvLength = Math<Real>::InvSqrt(rkW.m_afTuple[1]*rkW.m_afTuple[1] +
rkW.m_afTuple[2]*rkW.m_afTuple[2]);
rkU.m_afTuple[0] = (Real)0.0;
rkU.m_afTuple[1] = +rkW.m_afTuple[2]*fInvLength;
rkU.m_afTuple[2] = -rkW.m_afTuple[1]*fInvLength;
rkV.m_afTuple[0] = rkW.m_afTuple[1]*rkU.m_afTuple[2] -
rkW.m_afTuple[2]*rkU.m_afTuple[1];
rkV.m_afTuple[1] = -rkW.m_afTuple[0]*rkU.m_afTuple[2];
rkV.m_afTuple[2] = rkW.m_afTuple[0]*rkU.m_afTuple[1];
}
}
//----------------------------------------------------------------------------
template <class Real>
void Vector3<Real>::ComputeExtremes (int iVQuantity, const Vector3* akPoint,
Vector3& rkMin, Vector3& rkMax)
{
assert(iVQuantity > 0 && akPoint);
rkMin = akPoint[0];
rkMax = rkMin;
for (int i = 1; i < iVQuantity; i++)
{
const Vector3<Real>& rkPoint = akPoint[i];
for (int j = 0; j < 3; j++)
{
if (rkPoint[j] < rkMin[j])
{
rkMin[j] = rkPoint[j];
}
else if (rkPoint[j] > rkMax[j])
{
rkMax[j] = rkPoint[j];
}
}
}
}
//----------------------------------------------------------------------------
//template <class Real>
//std::ostream& operator<< (std::ostream& rkOStr, const Vector3<Real>& rkV)
//{
// return rkOStr << rkV.X() << ' ' << rkV.Y() << ' ' << rkV.Z();
//}
//----------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -