⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nor.c

📁 TI DM6446 EVM 串口下载程序 使用环境:windows dos环境或者linux 使用前需安装mono
💻 C
📖 第 1 页 / 共 2 页
字号:
/* --------------------------------------------------------------------------
    FILE        : nor.c 				                             	 	        
    PURPOSE     : NOR driver file
    PROJECT     : DaVinci User Boot-Loader and Flasher
    AUTHOR      : Daniel Allred
    DATE	    : Jan-22-2007
 
    HISTORY
 	     v1.00 completion 							 						      
 	          Daniel Allred - Jan-22-2007                                            
 ----------------------------------------------------------------------------- */

#ifdef UBL_NOR

#include "ubl.h"
#include "dm644x.h"
#include "uart.h"
#include "nor.h"

//External and global static variables
extern Uint32 __NORFlash;
volatile NOR_INFO gNorInfo;

// ----------------- Bus Width Agnostic commands -------------------
VUint8 *flash_make_addr (Uint32 blkAddr, Uint32 offset)
{
	return ((VUint8 *) ( blkAddr + (offset * gNorInfo.maxTotalWidth)));
}

void flash_make_cmd (Uint8 cmd, void *cmdbuf)
{
	Int32 i;
	Uint8 *cp = (Uint8 *) cmdbuf;

	for (i = gNorInfo.busWidth; i > 0; i--)
		*cp++ = (i & (gNorInfo.chipOperatingWidth - 1)) ? 0x00 : cmd;
}

void flash_write_cmd (Uint32 blkAddr, Uint32 offset, Uint8 cmd)
{
	volatile FLASHPtr addr;
	FLASHData cmdword;

	addr.cp = flash_make_addr (blkAddr, offset);
	flash_make_cmd ( cmd, &cmdword);
	switch (gNorInfo.busWidth)
	{
	    case BUS_8BIT:
            *addr.cp = cmdword.c;
            break;
        case BUS_16BIT:
            *addr.wp = cmdword.w;
            break;
	}
}

void flash_write_data(Uint32 address, Uint32 data)
{
	volatile FLASHPtr pAddr;
	FLASHData dataword;
	dataword.l = data;

	pAddr.cp = (VUint8*) address;
	
	switch (gNorInfo.busWidth)
	{
	    case BUS_8BIT:
            *pAddr.cp = dataword.c;
            break;
        case BUS_16BIT:
            *pAddr.wp = dataword.w;
            break;
	}
}

void flash_write_databuffer(Uint32* address, void* data, Uint32 numBytes)
{
    volatile FLASHPtr pAddr, pData;
    VUint8* endAddress;
		
	pData.cp = (VUint8*) data;
	pAddr.cp = (VUint8*) *address;
	endAddress =(VUint8*)((*address)+numBytes);
	while (pAddr.cp < endAddress)
	{
	    switch (gNorInfo.busWidth)
	    {
	        case BUS_8BIT:
                *pAddr.cp++ = *pData.cp++;
                break;
            case BUS_16BIT:
                *pAddr.wp++ = *pData.wp++;
                break;
	    }
    }
    
    // Put last data written at start of data buffer - For AMD verification
    switch (gNorInfo.busWidth)
    {
        case BUS_8BIT:
            *address = (Uint32)(endAddress-1);
            break;
        case BUS_16BIT:
            *address = (Uint32)(endAddress-2);
            break;
    }

}

Uint32 flash_verify_databuffer(Uint32 address, void* data, Uint32 numBytes)
{
    volatile FLASHPtr pAddr, pData;
    VUint8* endAddress;
		
	pData.cp = (VUint8*) data;
	pAddr.cp = (VUint8*) address;
	endAddress =(VUint8*)(address+numBytes);
	while (pAddr.cp < endAddress)
	{
	    switch (gNorInfo.busWidth)
	    {
	        case BUS_8BIT:
                if ( (*pAddr.cp++) != (*pData.cp++) )
                    return E_FAIL;
                break;
            case BUS_16BIT:
                if ( (*pAddr.wp++) != (*pData.wp++) )
                    return E_FAIL;
                break;
	    }
    }
    return E_PASS;
}

Uint32 flash_read_data(Uint32 address, Uint32 offset)
{
    volatile FLASHPtr pAddr;
	FLASHData dataword;
	dataword.l = 0x00000000;

	pAddr.cp = flash_make_addr(address, offset);
	
	switch (gNorInfo.busWidth)
	{
	    case BUS_8BIT:
            dataword.c = *pAddr.cp;
            break;
            
        case BUS_16BIT:
            dataword.w = *pAddr.wp;
            break;
	}
	return dataword.l;
}

FLASHData flash_read_CFI_bytes (Uint32 blkAddr, Uint32 offset, Uint8 numBytes)
{
    Int32 i;
	FLASHData readword;
	Uint8* pReadword = &readword.c;
	
	for (i = 0; i < numBytes; i++)
	{
	    *pReadword++ = *(flash_make_addr (blkAddr, offset+i));
    }
	
	return readword;
}

Bool flash_data_isequal (Uint32 blkAddr, Uint32 offset, Uint32 val)
{
	FLASHData testword_a, testword_b;
	Bool retval = FALSE;

	testword_a.l = val;
	testword_b.l = flash_read_data(blkAddr, offset);
	
	switch (gNorInfo.busWidth)
	{
	    case BUS_8BIT:
            retval = (testword_a.c == testword_b.c);
            break;
        case BUS_16BIT:
            retval = (testword_a.w == testword_b.w);
            break;
	}
    return retval;
}

Bool flash_CFI_isequal (Uint32 blkAddr, Uint32 offset, Uint8 val)
{
    volatile FLASHPtr addr;
	FLASHData testword;
	
	Bool retval = TRUE;

	addr.cp = flash_make_addr (blkAddr, offset);
	flash_make_cmd ( val, &testword);
	switch (gNorInfo.busWidth)
	{
	    case BUS_8BIT:
            retval = (testword.c == *addr.cp);
            break;
        case BUS_16BIT:
            retval = (testword.w == *addr.wp);
            break;
	}
    return retval;
}

Bool flash_issetall (Uint32 blkAddr, Uint32 offset, Uint8 mask)
{
    volatile FLASHPtr addr;
	FLASHData maskword;
	maskword.l = 0x00000000;
	
	Bool retval = TRUE;

	addr.cp = flash_make_addr (blkAddr, offset);
	flash_make_cmd ( mask, &maskword);
	switch (gNorInfo.busWidth)
	{
	    case BUS_8BIT:
            retval = ((maskword.c & *addr.cp) == maskword.c);
            break;
        case BUS_16BIT:
            retval = ((maskword.w & *addr.wp) == maskword.w);
            break;
	}
    return retval;
}

Bool flash_issetsome (Uint32 blkAddr, Uint32 offset, Uint8 mask)
{
    volatile FLASHPtr addr;
	FLASHData maskword;
	
	Bool retval = TRUE;

	addr.cp = flash_make_addr (blkAddr, offset);
	flash_make_cmd ( mask, &maskword);
	switch (gNorInfo.busWidth)
	{
	    case BUS_8BIT:
            retval = (maskword.c & *addr.cp);
            break;
        case BUS_16BIT:
            retval = (maskword.w & *addr.wp);
            break;
	}
    return retval;
}

//Initialize the AEMIF subsystem and settings
Uint32 NOR_Init()
{
    Uint8 width = ( ( (SYSTEM->BOOTCFG) >> 5) & 0x1 );

    // Select ASYNC EMIF Address Lines
    SYSTEM->PINMUX[0] = 0xC1F;

    // Program Asynchronous Wait Cycles Configuration Control Register
    AEMIF->AWCCR |= 0x0 ;

    // Program Asynchronous Bank3-5 Register
    AEMIF->AB1CR = 0x3FFFFFFC | width;
    AEMIF->AB2CR = 0x3FFFFFFC | width;
    AEMIF->AB3CR = 0x3FFFFFFC | width;
    AEMIF->AB4CR = 0x3FFFFFFC | width;
    
    /*AEMIF->AB1CR = 0
        | ( 0 << 31 ) // selectStrobe      = 0;
        | ( 0 << 30 ) // extWait           = 0;
        | ( 0 << 26 ) // writeSetup        = 0;    //   0 ns
        | ( 3 << 20 ) // writeStrobe       = 3;    //  35 ns
        | ( 0 << 17 ) // writeHold         = 0;    //   0 ns
        | ( 3 << 13 ) // readSetup         = 3;    //  30 ns
        | ( 10<< 7 )  // readStrobe        = 10;   // 120 ns
        | ( 0 << 4 )  // readHold          = 0;    //   0 ns
        | ( 3 << 2 )  // turnAround        = 3;    //  ?? ns ( MAX TIMEOUT )
        | ( 1 << 0 )  // asyncSize         = 1;    // 16-bit bus
        ;*/
                
    //Init the FlashInfo structure
    gNorInfo.flashBase = (Uint32) &(__NORFlash);
    
    // Set width to 8 or 16
    gNorInfo.busWidth = (width)?BUS_16BIT:BUS_8BIT;
    
    // Perform CFI Query
    if (QueryCFI(gNorInfo.flashBase) == E_PASS)
    {
        // Below is specifically needed to check for AMD flash on DVEVM (rev. D or earlier)
        // since it's top address line is not connected (don't ask me why)
        if (gNorInfo.numberRegions == 1)
        {
            if ( QueryCFI( gNorInfo.flashBase+(gNorInfo.flashSize>>1) ) == E_PASS )     
	        {
	            gNorInfo.flashSize >>= 1;
	            gNorInfo.numberBlocks[0] >>= 1;
	        }
        }
    }
    else
    {
        UARTSendData("CFI query failed.\r\n", FALSE);
        return E_FAIL;
    }
    
    // Setup function pointers
    
    UARTSendData("NOR Initialization:\r\n", FALSE);
    
    UARTSendData("\tCommand Set: ", FALSE);    
    switch (gNorInfo.commandSet)
    {
        case AMD_BASIC_CMDSET:
        case AMD_EXT_CMDSET:
            Flash_Erase          = &AMD_Erase;
            Flash_BufferWrite    = &AMD_BufferWrite;
            Flash_Write          = &AMD_Write;
            Flash_ID             = &AMD_ID;
            UARTSendData("AMD\r\n", FALSE);
            break;
        case INTEL_BASIC_CMDSET:
        case INTEL_EXT_CMDSET:
            Flash_Erase          = &Intel_Erase;
            Flash_BufferWrite    = &Intel_BufferWrite;
            Flash_Write          = &Intel_Write;
            Flash_ID             = &Intel_ID;
            UARTSendData("Intel\r\n", FALSE);
            break;
        default:
            Flash_Write          = &Unsupported_Write;
            Flash_BufferWrite    = &Unsupported_BufferWrite;
            Flash_Erase          = &Unsupported_Erase;
            Flash_ID             = &Unsupported_ID;
            UARTSendData("Unknown\r\n", FALSE);
            break;
    }
    
    if ( (*Flash_ID)(gNorInfo.flashBase) != E_PASS)
    {
        UARTSendData("NOR ID failed.\r\n", FALSE);
        return E_FAIL;
    }
        
    UARTSendData("\tManufacturer: ", FALSE);
    switch(gNorInfo.manfID)
    {
        case AMD:
            UARTSendData("AMD", FALSE);
            break;
        case FUJITSU:
            UARTSendData("FUJITSU", FALSE);
            break;
        case INTEL:
            UARTSendData("INTEL", FALSE);
            break;
        case MICRON:
            UARTSendData("MICRON", FALSE);
            break;
        case SAMSUNG:
            UARTSendData("SAMSUNG", FALSE);
            break;
        case SHARP:
            UARTSendData("SHARP", FALSE);
            break;
        default:
            UARTSendData("Unknown", FALSE);
            break;
    }
    UARTSendData("\r\n", FALSE);
    UARTSendData("\tSize (in bytes): 0x", FALSE);
    UARTSendInt( gNorInfo.flashSize );
    UARTSendData("\r\n", FALSE);
    
    return E_PASS;    
}

// Query the chip to check for CFI table and data
Uint32 QueryCFI( Uint32 baseAddress )
{                
    Int32 i;
    Uint32 blkVal; 
    
    // Six possible NOR Flash Configurations of DM644x
    //  1) Bus in x8 mode, x8 only device
    //  2) Bus in x8 mode, single x8/x16 flash operating in x8 mode
    //  3) Bus in x16 mode, single x8/x16 or x16-only flash operating in x16 mode
    //  4) Bus in x16 mode, two x8 flash operating in parallel.
    //  5) Bus in x16 mode, two x8/x16 flash, each in x8 mode, operating in parallel 
    //  6) Bus in x16 mode, single x16/x32 flash operating in x16 mode
	
	for (gNorInfo.chipOperatingWidth = BUS_8BIT; gNorInfo.chipOperatingWidth <= gNorInfo.busWidth;  gNorInfo.chipOperatingWidth <<= 1)
    {
        for (gNorInfo.maxTotalWidth = gNorInfo.busWidth; gNorInfo.maxTotalWidth <= (gNorInfo.busWidth*2); gNorInfo.maxTotalWidth <<= 1)
        {
            // Specify number of devices
            gNorInfo.numberDevices = 0;
            while ( gNorInfo.numberDevices * gNorInfo.chipOperatingWidth < gNorInfo.busWidth)
                gNorInfo.numberDevices++;
                                    
            // Enter the CFI Query mode
            flash_write_cmd (baseAddress, 0, CFI_EXIT_CMD);
            flash_write_cmd (baseAddress, CFI_QRY_CMD_ADDR, CFI_QRY_CMD);
            
            // Check for Query QRY values
            if ( flash_CFI_isequal ( baseAddress, CFI_Q, 'Q') && 
			     flash_CFI_isequal ( baseAddress, CFI_R, 'R') && 
			     flash_CFI_isequal ( baseAddress, CFI_Y, 'Y') )
			{               
			    gNorInfo.commandSet = (CMDSET) (flash_read_CFI_bytes(baseAddress,CFI_CMDSET,2).w);
	            gNorInfo.flashSize = 0x1 << flash_read_CFI_bytes(baseAddress,CFI_DEVICESIZE,1).c * gNorInfo.numberDevices;
                gNorInfo.numberRegions = flash_read_CFI_bytes(baseAddress,CFI_NUMBLKREGIONS,1).c;
                gNorInfo.bufferSize = 0x1 << flash_read_CFI_bytes(baseAddress,CFI_WRITESIZE,2).w * gNorInfo.numberDevices;
                
                // Get info on sector sizes in each erase region of device
                for (i = 0;i < gNorInfo.numberRegions; i++)
                {    
                    blkVal = flash_read_CFI_bytes(baseAddress,(CFI_BLKREGIONS+i*CFI_BLKREGIONSIZE),4).l;
                    gNorInfo.numberBlocks[i] = (blkVal&0x0000FFFF) + 1;
                    gNorInfo.blockSize[i]    = ((blkVal&0xFFFF0000) ? ( ((blkVal>>16)&0xFFFF) * 256) : 128) * gNorInfo.numberDevices;
                }
                
                // Exit CFI mode 
                flash_write_cmd (baseAddress, 0, CFI_EXIT_CMD);
			    
			    return E_PASS;
            }
        }        
    }
    
    flash_write_cmd (baseAddress, 0, CFI_EXIT_CMD);   
    return E_FAIL;
}


// -------------------------------------------------------------------------
// Manufacturer Specific Commands
// -------------------------------------------------------------------------

// ------------------------  Default Empty  ---------------------------
Uint32 Unsupported_Write( Uint32 address, VUint32 data)
{
    return E_FAIL;
}
Uint32 Unsupported_BufferWrite(Uint32 address, VUint8 data[], Uint32 length )
{
    return E_FAIL;
}
Uint32 Unsupported_Erase(Uint32 address)
{
    return E_FAIL;
}

Uint32 Unsupported_ID(Uint32 address)
{
    return E_FAIL;
}


// -------------------- Begin of Intel specific commands -----------------------

//ID flash
Uint32 Intel_ID( Uint32 baseAddress )
{
    // Intel Exit back to read array mode
    Intel_Soft_Reset_Flash();
    
    // Write ID command
    flash_write_cmd(baseAddress, 0, INTEL_ID_CMD);
        
    //Read Manufacturer's ID
    gNorInfo.manfID = (MANFID) flash_read_data(baseAddress, INTEL_MANFID_ADDR);
    
    // Read Device ID
    gNorInfo.devID1 = (Uint16) (MANFID) flash_read_data(baseAddress, INTEL_DEVID_ADDR);
    gNorInfo.devID2 = 0x0000;
        
    // Intel Exit back to read array mode
    Intel_Soft_Reset_Flash(); 
    
    return E_PASS;
}

// Reset back to Read array mode
void Intel_Soft_Reset_Flash()
{
    // Intel Exit back to read array mode
    flash_write_cmd(gNorInfo.flashBase,0,INTEL_RESET);
}

// Clear status register
void Intel_Clear_Status()
{
    // Intel clear status
    flash_write_cmd(gNorInfo.flashBase,0,INTEL_CLEARSTATUS_CMD);
}

// Remove block write protection
Uint32 Intel_Clear_Lock(VUint32 blkAddr)
{

	// Write the Clear Lock Command
    flash_write_cmd(blkAddr,0,INTEL_LOCK_CMD0);

    flash_write_cmd(blkAddr,0,INTEL_UNLOCK_BLOCK_CMD);

    // Check Status
	return Intel_Lock_Status_Check();
}

// Write-protect a block
Uint32 Intel_Set_Lock(VUint32 blkAddr)
{
	// Write the Set Lock Command	
    flash_write_cmd(blkAddr,0,INTEL_LOCK_CMD0);            

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -