⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 statictrainer.h

📁 amygdata的神经网络算法源代码
💻 H
字号:
/***************************************************************************                          statictrainer.h                             -------------------    begin                : Sat Mar 19 2005    copyright            : (C) 2005 by Matt Grover    email                : mgrover@amygdala.org ***************************************************************************//*************************************************************************** *                                                                         * *   This program is free software; you can redistribute it and/or modify  * *   it under the terms of the GNU General Public License as published by  * *   the Free Software Foundation; either version 2 of the License, or     * *   (at your option) any later version.                                   * *                                                                         * ***************************************************************************/#ifndef STATICTRAINER_H#define STATICTRAINER_H#include <amygdala/trainer.h>#include <amygdala/factory.h>#include <amygdala/functionlookup.h>#include <vector>namespace Amygdala {class StaticSynapse;/**  * @author Matt Grover <mgrover@amygdala.org>*/class StaticHebbianTrainerProperties: public TrainerProperties{public:    StaticHebbianTrainerProperties();    StaticHebbianTrainerProperties(float synapticTimeConst,                                    float synapticPotentiationConst,                                    float synapticDepressionConst,                                    float learningMax,                                    float posLearningTimeConst,                                    float negLearningTimeConst,                                    float learningConst,                                    unsigned int historySize);    virtual ~StaticHebbianTrainerProperties() {}    virtual StaticHebbianTrainerProperties* Copy();        void SetLearningConstant(float lConst) { learningConst = lConst; }    float GetLearningConstant() const { return learningConst; }    void SetSynapticTimeConst(float synConst) { synTimeConst = synConst; }    float GetSynapticTimeConst() const { return synTimeConst; }    void SetSynapticPotentiationConst(float potConst) { synPotConst = potConst; }    float GetSynapticPotentiationConst() const { return synPotConst; }    void SetSynapticDepressionConst(float depConst) {synDepConst = depConst; }    float GetSynapticDepressionConst() const { return synDepConst; }    void SetLearningMax(float learnMax) { learningMax = learnMax; }    float GetLearningMax() const { return learningMax; }    void SetPositiveLearningConst(float posLearn) { posLearnTimeConst = posLearn; }    float GetPositiveLearningConst() const { return posLearnTimeConst; }    void SetNegativeLearningConst(float negLearn) { negLearnTimeConst = negLearn; }    float GetNegativeLearningConst() const { return negLearnTimeConst; }    void SetHistorySize(unsigned int size) { historySize = size; }    unsigned int GetHistorySize() const { return historySize; }    virtual void SetProperty(const std::string& name, const std::string& value);    virtual std::map< std::string, std::string > GetPropertyMap() const;protected:    float synTimeConst;             // Synaptic time constant    float synPotConst;              // Synaptic potentiation constant    float synDepConst;              // Synaptic depression constant    float learningMax;              // Relative time of max weight increase (ms)    float posLearnTimeConst;        // Positive learning time const (t+) (ms)    float negLearnTimeConst;        // Negative learning time const (t-) (ms)    float learningConst;            // Learning constant    unsigned int historySize;};class StaticTrainer : public Trainer {public:     virtual ~StaticTrainer() = 0;    virtual TrainerProperties* Properties();    virtual void Train(StaticSynapse* syn, AmTimeInt lastTransmitTime, unsigned int lastHistIdx) = 0;    virtual void ReportSpike(SpikingNeuron* nrn) = 0;    virtual void PeriodicTrain() {}    virtual const std::string TrainableType() const { return "Static"; }protected:	StaticTrainer(TrainerProperties& props, std::string name):Trainer(props, name) {}};class StaticHebbianTrainer : public StaticTrainer {    template<class trainer, class trainerProperties>    friend class TrainerFactory;public:    typedef TrainerFactory<StaticHebbianTrainer,StaticHebbianTrainerProperties> Factory;	virtual ~StaticHebbianTrainer();    StaticHebbianTrainerProperties* Properties() { return static_cast<StaticHebbianTrainerProperties*>(tprops); }    virtual void Train(StaticSynapse* syn, AmTimeInt lastTransmitTime, unsigned int lastHistIdx);    virtual void ReportSpike(SpikingNeuron* nrn);protected:	StaticHebbianTrainer(StaticHebbianTrainerProperties& props, std::string name);    void InitLookup();    TableProperties GetTableProps(unsigned int index);    void MakeLookupTables();    std::vector<AmTimeInt> spikeHistory;    float learningMax;    unsigned int histIdx;    AmTimeInt lastSpikeTime;    unsigned int windowWidth;    float* weightDiffPreLookup;    float* weightDiffPostLookup;};namespace Factory {    static StaticHebbianTrainer::Factory MakeStaticHebbianTrainer;}}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -