⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 basicneuron.cpp

📁 amygdata的神经网络算法源代码
💻 CPP
📖 第 1 页 / 共 2 页
字号:
/***************************************************************************                          basicneuron.cpp  -  description                             -------------------    copyright            : (C) 2000, 2001, 2002 by Matt Grover    email                : mgrover@amygdala.org ***************************************************************************//*************************************************************************** *                                                                         * *   This program is free software; you can redistribute it and/or modify  * *   it under the terms of the GNU General Public License as published by  * *   the Free Software Foundation; either version 2 of the License, or     * *   (at your option) any later version.                                   * *                                                                         * ***************************************************************************/#include <cmath>#include <iostream>#include "basicneuron.h"#include "functionlookup.h"#include "network.h"#include "dendrite.h"#include "logging.h"#include "utilities.h"#include "physicalproperties.h"using namespace std;using namespace Amygdala;unsigned int BasicNeuron::pspStepSize = 0;unsigned int BasicNeuron::pspLSize = 0;BasicNeuronProperties::BasicNeuronProperties():    SpikingNeuronProperties(),    synTimeConst(10.0){}BasicNeuronProperties::BasicNeuronProperties(bool initializePhysicalProps):    SpikingNeuronProperties(initializePhysicalProps),    synTimeConst(10.0){    if(initializePhysicalProps){        PhysicalProperties::RGB color = {55, 200, 200};        physProps->SetBodyColor(color);    }}BasicNeuronProperties::BasicNeuronProperties(const BasicNeuronProperties& rhs):    SpikingNeuronProperties(rhs){    synTimeConst = rhs.synTimeConst;}BasicNeuronProperties::~BasicNeuronProperties(){}BasicNeuronProperties* BasicNeuronProperties::Copy() const{	return new BasicNeuronProperties(*this);}std::map< std::string, std::string > BasicNeuronProperties::GetPropertyMap() const{     std::map< std::string, std::string > props = SpikingNeuronProperties::GetPropertyMap();     props["synTimeConst"] = Utilities::ftostr(synTimeConst);     return props;}///////// End BasicNeuronProperties //////////BasicNeuron::BasicNeuron(AmIdInt neuronId, const BasicNeuronProperties& neuronProps):    SpikingNeuron(neuronId, neuronProps),    histBeginIdx(0),    maxThreshCrs(0),    pspLookup(0),    dPspLookup(0){    if (!pspStepSize) {	    Init();    }        InitLookup();}BasicNeuron::~BasicNeuron(){}void BasicNeuron::SetProperties(BasicNeuronProperties* props){	delete neuronProps;	neuronProps = props->Copy();}void BasicNeuron::SpikeCleanup(){	// reset inputHist vector	inputHist.clear();	histBeginIdx = 0;}void BasicNeuron::CalcState(float& state, float& deriv,                        const AmTimeInt& calcTime,                        const AmTimeInt& historySize){    AmTimeInt i, funcTime, tblIndex;    float funcWeight, stepSizeInv = 1.0/pspStepSize;    InputHist input;    state = 0.0;    deriv = 0.0;    for (i=histBeginIdx; i<historySize; i++) {        input = inputHist[i];        funcTime = calcTime - input.time;        funcWeight = input.weight;        #ifdef DEBUG_NEURON        cout << "funcTime: " << funcTime << endl;        cout << "funcWeight: " << funcWeight << endl;        #endif        tblIndex = (unsigned int)(funcTime * stepSizeInv);        if (tblIndex < pspLSize) {  // don't go beyond the end of the tables            state = state + (funcWeight * (pspLookup[tblIndex]));            deriv = deriv + (funcWeight * (dPspLookup[tblIndex]));        }        else {            ++histBeginIdx;        }    }}void BasicNeuron::ProcessInput(const AmTimeInt& inTime){    // If the neuron is within a refractory period,    if ( (inTime - spikeTime) <= refPeriod ) {        if (inTime > refPeriod) {	        dendrite->ResetTrigger();            return;        }    }    unsigned int i, iterate, converged, histSize, tblIndex;    AmTimeInt calcTime, funcTime;    float currState = 0.0;    float currDeriv = 0.0;    float stateDelta = 0.0;    float threshCrs = 0.0;    float lstThreshCrs = 0.0;    InputHist tmpInput;    iterate = 1;    converged = 0;    calcTime = 0;    funcTime = 0;    histSize = 0;    tblIndex = 0;    if (!maxThreshCrs) {        maxThreshCrs = pspLSize * pspStepSize;        // find the convergence resolution (the resolution at which two values        // of threshCrs are considered to be identical) -- must be <= simStepSize        if (simStepSize > pspStepSize) {            if (pspStepSize > (simStepSize / 2.0)) {                convergeRes = pspStepSize;            }            else {                convergeRes = simStepSize / 2.0;            }        }        else {            convergeRes = simStepSize;        }    }    calcTime = inTime;    inputTime = inTime;    currTime = inTime;    float inWeightPos, inWeightNeg;    dendrite->GetStimulationLevel(inWeightPos, inWeightNeg);        // Commented out until training classes are complete    /*if (trainingMode) {        dendrite->GetStimulationLevel(inWeightPos, inWeightNeg);    }    else {        dendrite->GetStimulationLevel(inWeightPos, inWeightNeg);    }*/    // neg and pos weights are combined here because excitatory and    // inhibitory synapses behave identically in this neuron model    tmpInput.weight = inWeightPos + inWeightNeg;    tmpInput.time = inTime;    inputHist.push_back(tmpInput);    histSize = inputHist.size();    // Return if the neuron is going to spike during the current time    // step and the input weight is positive    if (inTime == schedSpikeTime) {        if (tmpInput.weight > 0.0) {            return;        }    }    #ifdef DEBUG_NEURON    cout << "\nNeuron " << nId << " receiving a spike.\n";    for (i=0; i<histSize; i++) {        tmpInput = inputHist[i];        cout << "inTimeHist[" << i << "] " << tmpInput.time << endl;        cout << "inWeightHist[" << i << "] " << tmpInput.weight << endl;    }    cout << "calcTime: " << calcTime << endl;    cout << "inTime: " << inTime << endl;    cout << "currTime: " << currTime << endl;    #endif    i = 0;    // Use Newton's method to determine if and when the spike will occur    /**************************************************************************    *    1) Determine the membrane potential (currState) at time (calcTime -    *       inTimeHist[i]) by summing the state of each inTimeHist[]    *       (use pspLookup).    *    2) Find the derivative of the function for calcTime (dPspLookup).    *    3) Calculate intercept with thresholdPtnl.    *    4) Set new calcTime to time of intercept.    *    5) Repeat until:    *        a) Two successive iterations result in a change in calcTime    *           smaller than convergeRes (the convergence resolution).    *            (Converges)    *        b) The derivative of the function becomes negative.    *            (Does not converge)    **************************************************************************/    // Take care of a special case first:    // If this is the first input (starting from a rest potential)    // then the PSP can only cross the threshold at t = synTimeConst    // because of constraints on the maximum value of weights.    #ifdef DEBUG_NEURON    cout << "Starting main loop...\n";    #endif    if (histSize == 1) {        iterate = 0;        funcTime = (AmTimeInt)(dynamic_cast<BasicNeuronProperties*>(neuronProps)->GetSynapseConst())*1000;        tblIndex = (funcTime / pspStepSize);        currState = (inputHist[0].weight) * (pspLookup[tblIndex]);        if (currState >= 1.0) {            calcTime += funcTime;            converged = 1;        }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -