⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 feedforwardlayer.h

📁 amygdata的神经网络算法源代码
💻 H
字号:
/***************************************************************************                          feedforwardlayer.h  -  description                             -------------------    copyright            : (C) 2005 by Matt Grover    email                : mgrover@amygdala.org ***************************************************************************//*************************************************************************** *                                                                         * *   This program is free software; you can redistribute it and/or modify  * *   it under the terms of the GNU General Public License as published by  * *   the Free Software Foundation; either version 2 of the License, or     * *   (at your option) any later version.                                   * *                                                                         * ***************************************************************************/#ifndef FEEDFORWARDLAYER_H#define FEEDFORWARDLAYER_H#include <amygdala/topology.h>#include <amygdala/factory.h>#include <string>namespace Amygdala {class SynapseProperties;class NConncetor;/** @class FeedForwardLayer feedforwardlayer.h amygdala/feedforwardlayer.h * @brief Topology with convenience functions to build feedforward connections * * FeedForwardLayer is a topology that is meant to be used in layered networks * in which all of the neurons of one layer will form connections to one or more * layers elsewhere in the network. * @author Matt Grover <mgrover@amygdala.org> * @see Topology */class FeedForwardLayer: public Topology {public:    typedef TopologyFactory<FeedForwardLayer> Factory;    virtual ~FeedForwardLayer() {}    /** Form random connections to another FeedForwardLayer with weights evenly distributed     * between a maximum and minimum value.  Note that this will form connections with StaticSynapses only.     * @param outLayer The output Topology      * @param nc The connector used to connect the synapses     * @param sProps The synapses properties of the connections     * @param percentConnect The percentage of neurons in this layer that should form connections to outLayer */    void ConnectUniform(Topology * outLayer,                        NConnector & nc,                        SynapseProperties & sProps,                        const float percentConnect = 100);/*    /** Form random connections to another FeedForwardLayer with weights distributed according to a random     * Gaussian distribution.  Note that this will form connections with StaticSynapses only.     * @param outLayer The output FeedForwardLayer     * @param percentConnect The percentage of neurons in this layer that should form connections to outLayer     * @param meanWeight The mean weight (absolute value) for the Gaussian distribution     * @param stdDev The standard deviation used by the Gaussian     * @param delay The synaptic delay between the layers    void ConnectGaussian(FeedForwardLayer* outLayer,                        float percentConnect,                        float meanWeight,                        float stdDev,                        float delay);*/protected:    FeedForwardLayer(std::string& name):Topology(name) {};    /** Do any class-specific initialization after one of the MakeNeuron() functions has been called. */    virtual void InitNewNeuron(Neuron* nrn);private:    friend class Network;    template<class topology>    friend class TopologyFactory;};namespace Factory {    static FeedForwardLayer::Factory MakeFeedForwardLayer;}}   // namespace Amygdala#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -