⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_nvfragprog.c

📁 mesa-6.5-minigui源码
💻 C
📖 第 1 页 / 共 4 页
字号:
            {               GLfloat a[4], b[4], result[4];               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );               result[0] = (a[0] != b[0]) ? 1.0F : 0.0F;               result[1] = (a[1] != b[1]) ? 1.0F : 0.0F;               result[2] = (a[2] != b[2]) ? 1.0F : 0.0F;               result[3] = (a[3] != b[3]) ? 1.0F : 0.0F;               store_vector4( inst, machine, result );            }            break;         case OPCODE_STR: /* set true, operands ignored */            {               static const GLfloat result[4] = { 1.0F, 1.0F, 1.0F, 1.0F };               store_vector4( inst, machine, result );            }            break;         case OPCODE_SUB:            {               GLfloat a[4], b[4], result[4];               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );               result[0] = a[0] - b[0];               result[1] = a[1] - b[1];               result[2] = a[2] - b[2];               result[3] = a[3] - b[3];               store_vector4( inst, machine, result );            }            break;         case OPCODE_SWZ:            {               const struct prog_src_register *source = &inst->SrcReg[0];               const GLfloat *src = get_register_pointer(ctx, source,                                                         machine, program);               GLfloat result[4];               GLuint i;               /* do extended swizzling here */               for (i = 0; i < 4; i++) {                  if (GET_SWZ(source->Swizzle, i) == SWIZZLE_ZERO)                     result[i] = 0.0;                  else if (GET_SWZ(source->Swizzle, i) == SWIZZLE_ONE)                     result[i] = 1.0;                  else                     result[i] = src[GET_SWZ(source->Swizzle, i)];                  if (source->NegateBase & (1 << i))                     result[i] = -result[i];               }               store_vector4( inst, machine, result );            }            break;         case OPCODE_TEX: /* Both ARB and NV frag prog */            /* Texel lookup */            {               GLfloat texcoord[4], color[4];               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, texcoord );               /* Note: we pass 0 for LOD.  The ARB extension requires it                * while the NV extension says it's implementation dependant.                */               /* KW: Previously lambda was passed as zero, but I		* believe this is incorrect, the spec seems to		* indicate rather that lambda should not be		* changed/biased, unlike TXB where texcoord[3] is		* added to the lambda calculations.  The lambda should		* still be calculated normally for TEX & TXP though,		* not set to zero.  Otherwise it's very difficult to		* implement normal GL semantics through the fragment		* shader.		*/               fetch_texel( ctx, texcoord, 			    span->array->lambda[inst->TexSrcUnit][column],			    inst->TexSrcUnit, color );#if DEBUG_FRAG               if (color[3])                  printf("color[3] = %f\n", color[3]);#endif               store_vector4( inst, machine, color );            }            break;         case OPCODE_TXB: /* GL_ARB_fragment_program only */            /* Texel lookup with LOD bias */            {               GLfloat texcoord[4], color[4], bias, lambda;               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, texcoord );               /* texcoord[3] is the bias to add to lambda */               bias = ctx->Texture.Unit[inst->TexSrcUnit].LodBias                    + ctx->Texture.Unit[inst->TexSrcUnit]._Current->LodBias                    + texcoord[3];               lambda = span->array->lambda[inst->TexSrcUnit][column] + bias;               fetch_texel( ctx, texcoord, lambda,                            inst->TexSrcUnit, color );               store_vector4( inst, machine, color );            }            break;         case OPCODE_TXD: /* GL_NV_fragment_program only */            /* Texture lookup w/ partial derivatives for LOD */            {               GLfloat texcoord[4], dtdx[4], dtdy[4], color[4];               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, texcoord );               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, dtdx );               fetch_vector4( ctx, &inst->SrcReg[2], machine, program, dtdy );               fetch_texel_deriv( ctx, texcoord, dtdx, dtdy, inst->TexSrcUnit,                                  color );               store_vector4( inst, machine, color );            }            break;         case OPCODE_TXP: /* GL_ARB_fragment_program only */            /* Texture lookup w/ projective divide */            {               GLfloat texcoord[4], color[4];               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, texcoord );	       /* Not so sure about this test - if texcoord[3] is		* zero, we'd probably be fine except for an ASSERT in		* IROUND_POS() which gets triggered by the inf values created.		*/	       if (texcoord[3] != 0.0) {		  texcoord[0] /= texcoord[3];		  texcoord[1] /= texcoord[3];		  texcoord[2] /= texcoord[3];	       }               /* KW: Previously lambda was passed as zero, but I		* believe this is incorrect, the spec seems to		* indicate rather that lambda should not be		* changed/biased, unlike TXB where texcoord[3] is		* added to the lambda calculations.  The lambda should		* still be calculated normally for TEX & TXP though,		* not set to zero.		*/               fetch_texel( ctx, texcoord, 			    span->array->lambda[inst->TexSrcUnit][column],			    inst->TexSrcUnit, color );               store_vector4( inst, machine, color );            }            break;         case OPCODE_TXP_NV: /* GL_NV_fragment_program only */            /* Texture lookup w/ projective divide */            {               GLfloat texcoord[4], color[4];               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, texcoord );               if (inst->TexSrcTarget != TEXTURE_CUBE_INDEX &&		   texcoord[3] != 0.0) {                  texcoord[0] /= texcoord[3];                  texcoord[1] /= texcoord[3];                  texcoord[2] /= texcoord[3];               }               fetch_texel( ctx, texcoord,                            span->array->lambda[inst->TexSrcUnit][column],                            inst->TexSrcUnit, color );               store_vector4( inst, machine, color );            }            break;         case OPCODE_UP2H: /* unpack two 16-bit floats */            {               GLfloat a[4], result[4];               const GLuint *rawBits = (const GLuint *) a;               GLhalfNV hx, hy;               fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );               hx = rawBits[0] & 0xffff;               hy = rawBits[0] >> 16;               result[0] = result[2] = _mesa_half_to_float(hx);               result[1] = result[3] = _mesa_half_to_float(hy);               store_vector4( inst, machine, result );            }            break;         case OPCODE_UP2US: /* unpack two GLushorts */            {               GLfloat a[4], result[4];               const GLuint *rawBits = (const GLuint *) a;               GLushort usx, usy;               fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );               usx = rawBits[0] & 0xffff;               usy = rawBits[0] >> 16;               result[0] = result[2] = usx * (1.0f / 65535.0f);               result[1] = result[3] = usy * (1.0f / 65535.0f);               store_vector4( inst, machine, result );            }            break;         case OPCODE_UP4B: /* unpack four GLbytes */            {               GLfloat a[4], result[4];               const GLuint *rawBits = (const GLuint *) a;               fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );               result[0] = (((rawBits[0] >>  0) & 0xff) - 128) / 127.0F;               result[1] = (((rawBits[0] >>  8) & 0xff) - 128) / 127.0F;               result[2] = (((rawBits[0] >> 16) & 0xff) - 128) / 127.0F;               result[3] = (((rawBits[0] >> 24) & 0xff) - 128) / 127.0F;               store_vector4( inst, machine, result );            }            break;         case OPCODE_UP4UB: /* unpack four GLubytes */            {               GLfloat a[4], result[4];               const GLuint *rawBits = (const GLuint *) a;               fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );               result[0] = ((rawBits[0] >>  0) & 0xff) / 255.0F;               result[1] = ((rawBits[0] >>  8) & 0xff) / 255.0F;               result[2] = ((rawBits[0] >> 16) & 0xff) / 255.0F;               result[3] = ((rawBits[0] >> 24) & 0xff) / 255.0F;               store_vector4( inst, machine, result );            }            break;         case OPCODE_XPD: /* cross product */            {               GLfloat a[4], b[4], result[4];               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );               result[0] = a[1] * b[2] - a[2] * b[1];               result[1] = a[2] * b[0] - a[0] * b[2];               result[2] = a[0] * b[1] - a[1] * b[0];               result[3] = 1.0;               store_vector4( inst, machine, result );            }            break;         case OPCODE_X2D: /* 2-D matrix transform */            {               GLfloat a[4], b[4], c[4], result[4];               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );               fetch_vector4( ctx, &inst->SrcReg[2], machine, program, c );               result[0] = a[0] + b[0] * c[0] + b[1] * c[1];               result[1] = a[1] + b[0] * c[2] + b[1] * c[3];               result[2] = a[2] + b[0] * c[0] + b[1] * c[1];               result[3] = a[3] + b[0] * c[2] + b[1] * c[3];               store_vector4( inst, machine, result );            }            break;         case OPCODE_PRINT:            {               if (inst->SrcReg[0].File != -1) {                  GLfloat a[4];                  fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a);                  _mesa_printf("%s%g, %g, %g, %g\n", (const char *) inst->Data,                               a[0], a[1], a[2], a[3]);               }               else {                  _mesa_printf("%s\n", (const char *) inst->Data);               }            }            break;         case OPCODE_END:            return GL_TRUE;         default:            _mesa_problem(ctx, "Bad opcode %d in _mesa_exec_fragment_program",                          inst->Opcode);            return GL_TRUE; /* return value doesn't matter */      }   }   return GL_TRUE;}static voidinit_machine( GLcontext *ctx, struct fp_machine *machine,              const struct fragment_program *program,              const struct sw_span *span, GLuint col ){   GLuint inputsRead = program->Base.InputsRead;   GLuint u;   if (ctx->FragmentProgram.CallbackEnabled)      inputsRead = ~0;   if (program->Base.Target == GL_FRAGMENT_PROGRAM_NV) {      /* Clear temporary registers (undefined for ARB_f_p) */      _mesa_bzero(machine->Temporaries,                  MAX_NV_FRAGMENT_PROGRAM_TEMPS * 4 * sizeof(GLfloat));   }   /* Load input registers */   if (inputsRead & (1 << FRAG_ATTRIB_WPOS)) {      GLfloat *wpos = machine->Inputs[FRAG_ATTRIB_WPOS];      ASSERT(span->arrayMask & SPAN_Z);      wpos[0] = (GLfloat) span->x + col;      wpos[1] = (GLfloat) span->y;      wpos[2] = (GLfloat) span->array->z[col] / ctx->DrawBuffer->_DepthMaxF;      wpos[3] = span->w + col * span->dwdx;   }   if (inputsRead & (1 << FRAG_ATTRIB_COL0)) {      GLfloat *col0 = machine->Inputs[FRAG_ATTRIB_COL0];      ASSERT(span->arrayMask & SPAN_RGBA);      col0[0] = CHAN_TO_FLOAT(span->array->rgba[col][RCOMP]);      col0[1] = CHAN_TO_FLOAT(span->array->rgba[col][GCOMP]);      col0[2] = CHAN_TO_FLOAT(span->array->rgba[col][BCOMP]);      col0[3] = CHAN_TO_FLOAT(span->array->rgba[col][ACOMP]);   }   if (inputsRead & (1 << FRAG_ATTRIB_COL1)) {      GLfloat *col1 = machine->Inputs[FRAG_ATTRIB_COL1];      col1[0] = CHAN_TO_FLOAT(span->array->spec[col][RCOMP]);      col1[1] = CHAN_TO_FLOAT(span->array->spec[col][GCOMP]);      col1[2] = CHAN_TO_FLOAT(span->array->spec[col][BCOMP]);      col1[3] = CHAN_TO_FLOAT(span->array->spec[col][ACOMP]);   }   if (inputsRead & (1 << FRAG_ATTRIB_FOGC)) {      GLfloat *fogc = machine->Inputs[FRAG_ATTRIB_FOGC];      ASSERT(span->arrayMask & SPAN_FOG);      fogc[0] = span->array->fog[col];      fogc[1] = 0.0F;      fogc[2] = 0.0F;      fogc[3] = 0.0F;   }   for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) {      if (inputsRead & (1 << (FRAG_ATTRIB_TEX0 + u))) {         GLfloat *tex = machine->Inputs[FRAG_ATTRIB_TEX0 + u];         /*ASSERT(ctx->Texture._EnabledCoordUnits & (1 << u));*/         COPY_4V(tex, span->array->texcoords[u][col]);         /*ASSERT(tex[0] != 0 || tex[1] != 0 || tex[2] != 0);*/      }   }   /* init condition codes */   machine->CondCodes[0] = COND_EQ;   machine->CondCodes[1] = COND_EQ;   machine->CondCodes[2] = COND_EQ;   machine->CondCodes[3] = COND_EQ;}/** * Execute the current fragment program, operating on the given span. */void_swrast_exec_fragment_program( GLcontext *ctx, struct sw_span *span ){   const struct fragment_program *program = ctx->FragmentProgram._Current;   GLuint i;   ctx->_CurrentProgram = GL_FRAGMENT_PROGRAM_ARB; /* or NV, doesn't matter */   if (program->Base.Parameters) {      _mesa_load_state_parameters(ctx, program->Base.Parameters);   }      for (i = 0; i < span->end; i++) {      if (span->array->mask[i]) {         init_machine(ctx, &ctx->FragmentProgram.Machine,                      ctx->FragmentProgram._Current, span, i);         if (!execute_program(ctx, program, ~0,                              &ctx->FragmentProgram.Machine, span, i)) {            span->array->mask[i] = GL_FALSE;  /* killed fragment */            span->writeAll = GL_FALSE;         }         /* Store output registers */         {            const GLfloat *colOut               = ctx->FragmentProgram.Machine.Outputs[FRAG_RESULT_COLR];            UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][RCOMP], colOut[0]);            UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][GCOMP], colOut[1]);            UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][BCOMP], colOut[2]);            UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][ACOMP], colOut[3]);         }         /* depth value */         if (program->Base.OutputsWritten & (1 << FRAG_RESULT_DEPR)) {            const GLfloat depth               = ctx->FragmentProgram.Machine.Outputs[FRAG_RESULT_DEPR][2];            span->array->z[i] = IROUND(depth * ctx->DrawBuffer->_DepthMaxF);         }      }   }   if (program->Base.OutputsWritten & (1 << FRAG_RESULT_DEPR)) {      span->interpMask &= ~SPAN_Z;      span->arrayMask |= SPAN_Z;   }   ctx->_CurrentProgram = 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -