📄 s_nvfragprog.c
字号:
case COND_FL: return GL_FALSE; default: return GL_TRUE; }}/** * Store 4 floats into a register. Observe the instructions saturate and * set-condition-code flags. */static voidstore_vector4( const struct prog_instruction *inst, struct fp_machine *machine, const GLfloat value[4] ){ const struct prog_dst_register *dest = &(inst->DstReg); const GLboolean clamp = inst->SaturateMode == SATURATE_ZERO_ONE; const GLboolean updateCC = inst->CondUpdate; GLfloat *dstReg; GLfloat dummyReg[4]; GLfloat clampedValue[4]; GLboolean condWriteMask[4]; GLuint writeMask = dest->WriteMask; switch (dest->File) { case PROGRAM_OUTPUT: dstReg = machine->Outputs[dest->Index]; break; case PROGRAM_TEMPORARY: dstReg = machine->Temporaries[dest->Index]; break; case PROGRAM_WRITE_ONLY: dstReg = dummyReg; return; default: _mesa_problem(NULL, "bad register file in store_vector4(fp)"); return; }#if DEBUG_FRAG if (value[0] > 1.0e10 || IS_INF_OR_NAN(value[0]) || IS_INF_OR_NAN(value[1]) || IS_INF_OR_NAN(value[2]) || IS_INF_OR_NAN(value[3]) ) printf("store %g %g %g %g\n", value[0], value[1], value[2], value[3]);#endif if (clamp) { clampedValue[0] = CLAMP(value[0], 0.0F, 1.0F); clampedValue[1] = CLAMP(value[1], 0.0F, 1.0F); clampedValue[2] = CLAMP(value[2], 0.0F, 1.0F); clampedValue[3] = CLAMP(value[3], 0.0F, 1.0F); value = clampedValue; } if (dest->CondMask != COND_TR) { condWriteMask[0] = GET_BIT(writeMask, 0) && test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 0)], dest->CondMask); condWriteMask[1] = GET_BIT(writeMask, 1) && test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 1)], dest->CondMask); condWriteMask[2] = GET_BIT(writeMask, 2) && test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 2)], dest->CondMask); condWriteMask[3] = GET_BIT(writeMask, 3) && test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 3)], dest->CondMask); writeMask = ((condWriteMask[0] << 0) | (condWriteMask[1] << 1) | (condWriteMask[2] << 2) | (condWriteMask[3] << 3)); } if (GET_BIT(writeMask, 0)) { dstReg[0] = value[0]; if (updateCC) machine->CondCodes[0] = generate_cc(value[0]); } if (GET_BIT(writeMask, 1)) { dstReg[1] = value[1]; if (updateCC) machine->CondCodes[1] = generate_cc(value[1]); } if (GET_BIT(writeMask, 2)) { dstReg[2] = value[2]; if (updateCC) machine->CondCodes[2] = generate_cc(value[2]); } if (GET_BIT(writeMask, 3)) { dstReg[3] = value[3]; if (updateCC) machine->CondCodes[3] = generate_cc(value[3]); }}/** * Initialize a new machine state instance from an existing one, adding * the partial derivatives onto the input registers. * Used to implement DDX and DDY instructions in non-trivial cases. */static voidinit_machine_deriv( GLcontext *ctx, const struct fp_machine *machine, const struct fragment_program *program, const struct sw_span *span, char xOrY, struct fp_machine *dMachine ){ GLuint u; ASSERT(xOrY == 'X' || xOrY == 'Y'); /* copy existing machine */ _mesa_memcpy(dMachine, machine, sizeof(struct fp_machine)); if (program->Base.Target == GL_FRAGMENT_PROGRAM_NV) { /* Clear temporary registers (undefined for ARB_f_p) */ _mesa_bzero( (void*) machine->Temporaries, MAX_NV_FRAGMENT_PROGRAM_TEMPS * 4 * sizeof(GLfloat)); } /* Add derivatives */ if (program->Base.InputsRead & (1 << FRAG_ATTRIB_WPOS)) { GLfloat *wpos = (GLfloat*) machine->Inputs[FRAG_ATTRIB_WPOS]; if (xOrY == 'X') { wpos[0] += 1.0F; wpos[1] += 0.0F; wpos[2] += span->dzdx; wpos[3] += span->dwdx; } else { wpos[0] += 0.0F; wpos[1] += 1.0F; wpos[2] += span->dzdy; wpos[3] += span->dwdy; } } if (program->Base.InputsRead & (1 << FRAG_ATTRIB_COL0)) { GLfloat *col0 = (GLfloat*) machine->Inputs[FRAG_ATTRIB_COL0]; if (xOrY == 'X') { col0[0] += span->drdx * (1.0F / CHAN_MAXF); col0[1] += span->dgdx * (1.0F / CHAN_MAXF); col0[2] += span->dbdx * (1.0F / CHAN_MAXF); col0[3] += span->dadx * (1.0F / CHAN_MAXF); } else { col0[0] += span->drdy * (1.0F / CHAN_MAXF); col0[1] += span->dgdy * (1.0F / CHAN_MAXF); col0[2] += span->dbdy * (1.0F / CHAN_MAXF); col0[3] += span->dady * (1.0F / CHAN_MAXF); } } if (program->Base.InputsRead & (1 << FRAG_ATTRIB_COL1)) { GLfloat *col1 = (GLfloat*) machine->Inputs[FRAG_ATTRIB_COL1]; if (xOrY == 'X') { col1[0] += span->dsrdx * (1.0F / CHAN_MAXF); col1[1] += span->dsgdx * (1.0F / CHAN_MAXF); col1[2] += span->dsbdx * (1.0F / CHAN_MAXF); col1[3] += 0.0; /*XXX fix */ } else { col1[0] += span->dsrdy * (1.0F / CHAN_MAXF); col1[1] += span->dsgdy * (1.0F / CHAN_MAXF); col1[2] += span->dsbdy * (1.0F / CHAN_MAXF); col1[3] += 0.0; /*XXX fix */ } } if (program->Base.InputsRead & (1 << FRAG_ATTRIB_FOGC)) { GLfloat *fogc = (GLfloat*) machine->Inputs[FRAG_ATTRIB_FOGC]; if (xOrY == 'X') { fogc[0] += span->dfogdx; } else { fogc[0] += span->dfogdy; } } for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) { if (program->Base.InputsRead & (1 << (FRAG_ATTRIB_TEX0 + u))) { GLfloat *tex = (GLfloat*) machine->Inputs[FRAG_ATTRIB_TEX0 + u]; /* XXX perspective-correct interpolation */ if (xOrY == 'X') { tex[0] += span->texStepX[u][0]; tex[1] += span->texStepX[u][1]; tex[2] += span->texStepX[u][2]; tex[3] += span->texStepX[u][3]; } else { tex[0] += span->texStepY[u][0]; tex[1] += span->texStepY[u][1]; tex[2] += span->texStepY[u][2]; tex[3] += span->texStepY[u][3]; } } } /* init condition codes */ dMachine->CondCodes[0] = COND_EQ; dMachine->CondCodes[1] = COND_EQ; dMachine->CondCodes[2] = COND_EQ; dMachine->CondCodes[3] = COND_EQ;}/** * Execute the given vertex program. * NOTE: we do everything in single-precision floating point; we don't * currently observe the single/half/fixed-precision qualifiers. * \param ctx - rendering context * \param program - the fragment program to execute * \param machine - machine state (register file) * \param maxInst - max number of instructions to execute * \return GL_TRUE if program completed or GL_FALSE if program executed KIL. */static GLbooleanexecute_program( GLcontext *ctx, const struct fragment_program *program, GLuint maxInst, struct fp_machine *machine, const struct sw_span *span, GLuint column ){ GLuint pc;#if DEBUG_FRAG printf("execute fragment program --------------------\n");#endif for (pc = 0; pc < maxInst; pc++) { const struct prog_instruction *inst = program->Base.Instructions + pc; if (ctx->FragmentProgram.CallbackEnabled && ctx->FragmentProgram.Callback) { ctx->FragmentProgram.CurrentPosition = inst->StringPos; ctx->FragmentProgram.Callback(program->Base.Target, ctx->FragmentProgram.CallbackData); } switch (inst->Opcode) { case OPCODE_ABS: { GLfloat a[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); result[0] = FABSF(a[0]); result[1] = FABSF(a[1]); result[2] = FABSF(a[2]); result[3] = FABSF(a[3]); store_vector4( inst, machine, result ); } break; case OPCODE_ADD: { GLfloat a[4], b[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = a[0] + b[0]; result[1] = a[1] + b[1]; result[2] = a[2] + b[2]; result[3] = a[3] + b[3]; store_vector4( inst, machine, result ); } break; case OPCODE_CMP: { GLfloat a[4], b[4], c[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); fetch_vector4( ctx, &inst->SrcReg[2], machine, program, c ); result[0] = a[0] < 0.0F ? b[0] : c[0]; result[1] = a[1] < 0.0F ? b[1] : c[1]; result[2] = a[2] < 0.0F ? b[2] : c[2]; result[3] = a[3] < 0.0F ? b[3] : c[3]; store_vector4( inst, machine, result ); } break; case OPCODE_COS: { GLfloat a[4], result[4]; fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a ); result[0] = result[1] = result[2] = result[3] = (GLfloat)_mesa_cos(a[0]); store_vector4( inst, machine, result ); } break; case OPCODE_DDX: /* Partial derivative with respect to X */ { GLfloat a[4], aNext[4], result[4]; struct fp_machine dMachine; if (!fetch_vector4_deriv(ctx, &inst->SrcReg[0], span, 'X', column, result)) { /* This is tricky. Make a copy of the current machine state, * increment the input registers by the dx or dy partial * derivatives, then re-execute the program up to the * preceeding instruction, then fetch the source register. * Finally, find the difference in the register values for * the original and derivative runs. */ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a); init_machine_deriv(ctx, machine, program, span, 'X', &dMachine); execute_program(ctx, program, pc, &dMachine, span, column); fetch_vector4( ctx, &inst->SrcReg[0], &dMachine, program, aNext ); result[0] = aNext[0] - a[0]; result[1] = aNext[1] - a[1]; result[2] = aNext[2] - a[2]; result[3] = aNext[3] - a[3]; } store_vector4( inst, machine, result ); } break; case OPCODE_DDY: /* Partial derivative with respect to Y */ { GLfloat a[4], aNext[4], result[4]; struct fp_machine dMachine; if (!fetch_vector4_deriv(ctx, &inst->SrcReg[0], span, 'Y', column, result)) { init_machine_deriv(ctx, machine, program, span, 'Y', &dMachine); fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a); execute_program(ctx, program, pc, &dMachine, span, column); fetch_vector4( ctx, &inst->SrcReg[0], &dMachine, program, aNext ); result[0] = aNext[0] - a[0]; result[1] = aNext[1] - a[1]; result[2] = aNext[2] - a[2]; result[3] = aNext[3] - a[3]; } store_vector4( inst, machine, result ); } break; case OPCODE_DP3: { GLfloat a[4], b[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = result[1] = result[2] = result[3] = a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; store_vector4( inst, machine, result );#if DEBUG_FRAG printf("DP3 %g = (%g %g %g) . (%g %g %g)\n", result[0], a[0], a[1], a[2], b[0], b[1], b[2]);#endif } break; case OPCODE_DP4: { GLfloat a[4], b[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = result[1] = result[2] = result[3] = a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3]; store_vector4( inst, machine, result );#if DEBUG_FRAG printf("DP4 %g = (%g, %g %g %g) . (%g, %g %g %g)\n", result[0], a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);#endif } break; case OPCODE_DPH: { GLfloat a[4], b[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = result[1] = result[2] = result[3] = a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + b[3]; store_vector4( inst, machine, result ); } break; case OPCODE_DST: /* Distance vector */ { GLfloat a[4], b[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = 1.0F; result[1] = a[1] * b[1]; result[2] = a[2]; result[3] = b[3]; store_vector4( inst, machine, result ); } break; case OPCODE_EX2: /* Exponential base 2 */ {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -